• Title/Summary/Keyword: Motion Response

Search Result 2,124, Processing Time 0.027 seconds

Seismic analysis of shear wall buildings incorporating site specific ground response

  • Jayalekshmi, B.R.;Chinmayi, H.K.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.433-453
    • /
    • 2016
  • During earthquake, the motion of ground is affected significantly by source characteristics, source-to-site path properties and local site conditions. Due to the influence of local soil conditions different places experience distinctive amplitude of surface ground motion. Ground response analysis of a specific site utilizing the borehole information at different locations is done in present study. The ground motion with the highest peak ground acceleration for this site obtained from the ground response analysis is used in finite element soil-structure interaction analysis of multi-storey shear wall buildings with various positions of shear walls. The variation in seismic response of buildings and advantageous position of shear wall are determined. The study reveals that providing shear wall at the core of buildings at the specific site is advantageous among all shear wall configurations considered.

Dynamic Response Characteristics of Tension Leg Platforms in Waves (인장계류식 해양구조물의 동적응답 특성)

  • Lee, C.H.;Son, Y.K.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.81-86
    • /
    • 1998
  • The dynamic response characteristics of Tension Leg Platforms(TLPs) in waves are examined for presenting the basic data for design of TLPs. The numerical approach is based on a combination of the three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLP is assumed to be flexible instead of rigid. Restoring forces by hydrostatic pressure on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in the motion and structural analysis. Numerical results are compared with the experimental ones, which are obtained in the literature, concerning the motion and tension responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

A Dynamic Response Analysis of Tension Leg Platforms in Waves (I) (인장계규식 해양구조물의 동적응답해석(I))

  • 구자삼;김진하;이창호
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.161-172
    • /
    • 1995
  • A numerical procedure is described fro predicting the motion and structural responses of tension leg platforms(TLPs) in waves. The developed numerical approach is based on a combination of a three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLPs is assumed flexible instead of the rigid body assumption used in tow-step analysis method. Both the hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural whole structure are formulated using element-fixed coordinate systems which have the origin at the node of the each hull element and move parallel to a space-fixed coordinate system. Numerical results are compared with the experimental and numerical ones, which are obtained in the literature, concerning the motion and structural responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

A Study on the analysis of ship motion using system identification method (시스템 식별법을 이용한 선체운동 해석에 관한 연구)

  • Song, Jaeyoung;Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.271-271
    • /
    • 2019
  • Estimating ship motion is difficult because it take place in complex environments.. Estimating ship motion is an important factor in ensuring the safety of ship, so accurate estimates are needed. Existing motion-related studies compare the apparent motion of the model acquired and the reference model by experimenting with the ship motion on a particular alignment, making it difficult to intuitively estimate the hull motion. This study introduces the concept of estimating the characteristics of ship motion as a transfer function through pole-zero interpretation and frequency response analysis by applying the method of transfer function of Linear-Time Invariant system. Ship motion analysis model using Linear-Time Invariant system is consist with 1) wave as input signal 2) ship motion as output signal 3) hull defined as black box. This model can be defined by numericalizing the ship motion as a transfer function and is expected to facilitate the characterization of the ship motion through pole-zero analysis and frequency response analysis.

  • PDF

Soil-structure-foundation effects on stochastic response analysis of cable-stayed bridges

  • Kuyumcu, Zeliha;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.637-655
    • /
    • 2012
  • In this study, stochastic responses of a cable-stayed bridge subjected to the spatially varying earthquake ground motion are investigated by the finite element method taking into account soil-structure interaction (SSI) effects. The considered bridge in the analysis is Quincy Bay-view Bridge built on the Mississippi River in between 1983-1987 in Illinois, USA. The bridge is composed of two H-shaped concrete towers, double plane fan type cables and a composite concrete-steel girder deck. In order to determine the stochastic response of the bridge, a two-dimensional lumped masses model is considered. Incoherence, wave-passage and site response effects are taken into account for the spatially varying earthquake ground motion. Depending on variation in the earthquake motion, the response values of the cable-stayed bridge supported on firm, medium and soft foundation soil are obtained, separately. The effects of SSI on the stochastic response of the cable-stayed bridge are also investigated including foundation as a rigidly capped vertical pile groups. In this approach, piles closely grouped together beneath the towers are viewed as a single equivalent upright beam. The soil-pile interaction is linearly idealized as an upright beam on Winkler foundation model which is commonly used to study the response of single piles. A sufficient number of springs on the beam should be used along the length of the piles. The springs near the surface are usually the most important to characterize the response of the piles surrounded by the soil; thus a closer spacing may be used in that region. However, in generally springs are evenly spaced at about half the diameter of the pile. The results of the stochastic analysis with and without the SSI are compared each other while the bridge is under the sway of the spatially varying earthquake ground motion. Specifically, in case of rigid towers and soft soil condition, it is pointed out that the SSI should be significantly taken into account for the design of such bridges.

Stochastic responses of isolated bridge with triple concave friction pendulum bearing under spatially varying ground motion

  • Yurdakul, Muhammet;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.771-784
    • /
    • 2018
  • This study aims to investigate the stochastic response of isolated and non-isolated highway bridges subjected to spatially varying earthquake ground motion model. This model includes wave passage, incoherence and site response effects. The wave passage effect is examined by using various wave velocities. The incoherency effect is investigated by considering the Harichandran and Vanmarcke coherency model. The site response effect is considered by selecting homogeneous firm, medium and soft soil types where the bridge supports are constructed. The ground motion is described by power spectral density function and applied to each support point. Triple concave friction pendulum (TCFP) bearing which is more effective than other seismic isolation systems is used for seismic isolation. To implement seismic isolation procedure, TCFP bearing devices are placed at each of the support points of the deck. In the analysis, the bridge selected is a five-span featuring cast-in-place concrete box girder superstructure supported on reinforced concrete columns. Foundation supported highway bridge is regarded as three regions and compared its different situation in the stochastic analysis. The stochastic analyses results show that spatially varying ground motion has important effects on the stochastic response of the isolated and non-isolated bridges as long span structures.

A dynamic response Analysis of Tension Leg Platforms in Waves (II) (인장계류식 해양구조물의 동적응답해석(II))

  • 구자삼;박찬후;이창호
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.25-35
    • /
    • 1996
  • A numerical procedure is described for predicting the motion and structural responses of tension leg platforms(TLPs) in waves. The developed numerical approach is based on a combination of a three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLPs is assumed to be flexible instead of rigid. Restoring forces by hydrostatic pressure on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in the motion and structural analysis. The equations of motion of a whole structure are formulated using element-fixed coordinate systems which have the orgin at the nodes of the each hull element and move parallel to a space-fixed coordinate system. Numerical results are compared with the experimental and numerical ones, which are obtained in the literature, concerning the motion and structural responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

Chaotic Rocking Vibration of a Rigid Block with Sliding Motion Under Two-Dimensional Harmonic Excitation

  • Jeong, Man-Yong;Kim, Jeong-Ho;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1040-1053
    • /
    • 2002
  • This research deals with the influence of nonlinearities associated with impact and sliding upon the rocking behavior of a rigid block, which is subjected to two-dimensional horizontal and vertical excitation. Nonlinearities in the vibration were found to depend strongly on the effect of the impact between the block and the base, which involves an abrupt reduction in the system's kinetic energy. In particular, when sliding occurs, the rocking behavior is substantially changed. Response analysis using a non-dimensional rocking equation was carried out for a variety of excitation levels and excitation frequencies. The chaos responses were observed over a wide response region, particularly, in the cases of high vertical displacement and violent sliding motion, and the chaos characteristics appear in the time histories, Poincare maps, power spectra and Lyapunov exponents of the rocking responses. The complex behavior of chaotic response, in phase space, is illustrated by the Poincare map. The distribution of the rocking response is described by bifurcation diagrams and the effects of sliding motion are examined through the several rocking response examples.

Moving load induced dynamic response of functionally graded-carbon nanotubes-reinforced pipes conveying fluid subjected to thermal load

  • Tahami, F. Vakili;Biglari, H.;Raminnea, M.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.515-526
    • /
    • 2017
  • Dynamic response of functionally graded Carbon nanotubes (FG-CNT) reinforced pipes conveying viscous fluid under accelerated moving load is presented. The mixture rule is used for obtaining the material properties of nano-composite pipe. The radial force induced by viscous fluid is calculated by Navier-Stokes equation. The material properties of pipe are considered temperature-dependent. The structure is simulated by Reddy higher-order shear deformation shell theory and the corresponding motion equations are derived by Hamilton's principal. Differential quadrature (DQ) method and the Integral Quadrature (IQ) are applied for analogizing the motion equations and then the Newmark time integration scheme is used for obtaining the dynamic response of structure. The effects of different parameters such as boundary conditions, geometrical parameters, velocity and acceleration of moving load, CNT volume percent and distribution type are shown on the dynamic response of pipe. Results indicate that increasing CNTs leads to decrease in transient deflection of structure. In accelerated motion of the moving load, the maximum displacement is occurred later with respect to decelerated motion of moving load.

Finite Element Forced Response of a Spinning Flexible HDD Disk-spindle System Considering the Asymmetry Originating from Gyroscopic Effect and Fluid Dynamic Bearings (자이로스코픽 효과와 유체 동압 베어링에 의한 비대칭성을 고려한 회전 유연 디스크-스핀들 시스템의 유한요소 강제 진동 해석)

  • Park, Ki-Yong;Jang, Gun-Hee;Seo, Chan-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.915-922
    • /
    • 2010
  • This paper presents an efficient method for determining the forced response of a spinning flexible disk-spindle system supported by fluid dynamic bearings(FDBs) in a computer hard disk drive(HDD). The spinning flexible disk-spindle system is represented by the asymmetric finite element equations of motion originating from the asymmetric dynamic coefficients of the FDBs and the gyroscopic moment of a spinning disk-spindle system. The proposed method utilizes only the right eigenvectors of the eigenvalue problem to transform the large asymmetric finite element equations of motion into a small number of coupled equations, guaranteeing the accuracy of their numerical integration. The results are then back-substituted into the equations of motion to determine the forced response. The effectiveness of the proposed method was verified by comparing it with the responses from the classical methods of mode superposition with the general eigenvalue problems, and mode superposition with modal approximation. The proposed method was shown to be effective in determining the forced response represented by the asymmetric finite element equations of motion of a spinning flexible disk-spindle system supported by FDBs.