• Title/Summary/Keyword: Motion Response

Search Result 2,166, Processing Time 0.036 seconds

A Comparative Study on Evaluation of Response spectrum accounting for Soil Types (지반 종류별 응답스펙트럼 평가에 대한 비교 연구)

  • 김선우;한상환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.433-438
    • /
    • 2001
  • The response spectrum has been widely used to differentiate the significant characteristics of earthquake ground motion and to evaluate the response of structures under ground shaking. Current design response spectrum is based on Seed, Ugas, and Lysmer's study. (1976) In this study, earthquake ground motion data sets adopted by Seed, Miranda, and Riddell is analyzed regards to soil types. And how earthquake data sets effected the design response spectrum is evaluated using acceleration-displacement response spectrum.

  • PDF

Characteristics of Heaving Motion of Hollow Circular Cylinder (내부가 빈 원기둥의 수직운동 특성)

  • Bae, Yoon Hyeok;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.43-50
    • /
    • 2013
  • In the present investigation, the hydrodynamic characteristics of a vertically floating hollow cylinder in regular waves have been studied. The potential theory for solving the diffraction and radiation problem was employed by assuming that the heave response motion was linear. By using the matched eigenfunction expansion method, the characteristics of the exciting forces, hydrodynamic coefficients, and heave motion responses were investigated with various system parameters such as the radius and draft of a hollow cylinder. In the present analytical model, two resonances are identified: the system resonance of a hollow cylinder and the piston-mode resonance in the confined inner fluid region. The piston resonance mode is especially important in the motion response of a hollow circular cylinder. In many cases, the heave response at the piston resonance mode is large, and its resonant frequency can be predicted using the empirical formula of Fukuda (1977). The present design tool can be applied to analyze the motion response of a spar offshore structure with a moon pool.

Kinect Sensor- based LMA Motion Recognition Model Development

  • Hong, Sung Hee
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.367-372
    • /
    • 2021
  • The purpose of this study is to suggest that the movement expression activity of intellectually disabled people is effective in the learning process of LMA motion recognition based on Kinect sensor. We performed an ICT motion recognition games for intellectually disabled based on movement learning of LMA. The characteristics of the movement through Laban's LMA include the change of time in which movement occurs through the human body that recognizes space and the tension or relaxation of emotion expression. The design and implementation of the motion recognition model will be described, and the possibility of using the proposed motion recognition model is verified through a simple experiment. As a result of the experiment, 24 movement expression activities conducted through 10 learning sessions of 5 participants showed a concordance rate of 53.4% or more of the total average. Learning motion games that appear in response to changes in motion had a good effect on positive learning emotions. As a result of study, learning motion games that appear in response to changes in motion had a good effect on positive learning emotions

Seismic response of a high-rise flexible structure under H-V-R ground motion

  • We, Wenhui;Hu, Ying;Jiang, Zhihan
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.169-181
    • /
    • 2022
  • To research the dynamic response of the high-rise structure under the rocking ground motion, which we believed that the effect cannot be ignored, especially accompanied by vertical ground motion. Theoretical analysis and shaking table seismic simulation tests were used to study the response of a high-rise structure to excitation of a H-V-R ground motion that included horizontal, vertical, and rocking components. The use of a wavelet analysis filtering technique to extract the rocking component from data for the primary horizontal component in the first part, based on the principle of horizontal pendulum seismogram and the use of a wavelet analysis filtering technique. The dynamic equation of motion for a high-rise structure under H-V-R ground motion was developed in the second part, with extra P-△ effect due to ground rocking displacement was included in the external load excitation terms of the equation of motion, and the influence of the vertical component on the high-rise structure P-△ effect was also included. Shaking table tests were performed for H-V-R ground motion using a scale model of a high-rise TV tower structure in the third part, while the results of the shaking table tests and theoretical calculation were compared in the last part, and the following conclusions were made. The results of the shaking table test were consistent with the theoretical calculation results, which verified the accuracy of the theoretical analysis. The rocking component of ground motion significantly increased the displacement of the structure and caused an asymmetric displacement of the structure. Thus, the seismic design of an engineering structure should consider the additional P-△ effect due to the rocking component. Moreover, introducing the vertical component caused the geometric stiffness of the structure to change with time, and the influence of the rocking component on the structure was amplified due to this effect.

Dynamic response of empty steel tanks with dome roof under vertical base motion

  • Virella, Juan C.;Godoy, Luis A.
    • Steel and Composite Structures
    • /
    • v.9 no.2
    • /
    • pp.119-130
    • /
    • 2009
  • This paper reports results of the structural response of empty steel tanks under vertical ground motions. The tanks are modeled using a finite element discretization using shell elements, and the vertical motion is applied and analyzed using nonlinear dynamics. Several excitation frequencies are considered, with emphasis on those that may lead to resonance of the roof. The computational results illustrate that as the base motion frequency is tuned with the frequency of the first roof-mode of the tank, the system displays large-amplitude displacements. For frequencies away from such mode, small amplitude displacements are obtained. The effect of the height of the cylinder on the dynamic response of the tank to vertical ground motion has also been investigated. The vertical acceleration of the ground motion that induces significant changes in the stiffness of the tank was found to be almost constant regardless of the height of the cylinder.

A study on the topographical and geotechnical effects in 2-D soil-structure interaction analysis under ground motion

  • Duzgun, Oguz Akin;Budak, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.40 no.6
    • /
    • pp.829-845
    • /
    • 2011
  • This paper evaluates the effects of topographical and geotechnical irregularities on the dynamic response of the 2-D soil-structure systems under ground motion by coupling finite and infinite elements. A numerical procedure is employed, and a parametric study is carried out for single-faced slope topographies. It is concluded that topographic conditions may have important effects on the ground motion along the slope. The geotechnical properties of the soil will also have significantly amplified effects on the whole system motion, which cannot be neglected for design purposes. So, dynamic response of a soil-structure systems are primarily affected by surface shapes and geotechnical properties of the soil. Location of the structure is another parameter affecting the whole system response.

A Study on 2D Character Response of Speed Method Using Unity

  • HAN, Dong-Hun;CHOI, Jeong-Hyun;LIM, Myung-Jae
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.35-40
    • /
    • 2021
  • In this paper, many game companies seek better optimization and easy-to-apply logic to prolong the game's lifespan and provide a better game environment for users. Therefore, research will be showing the game's key input response method called RoS (Response of Speed). The purpose of the method is to simultaneously perform various motions with the character showing natural motion without errors even if the character's control key is duplicated. This method is for the developers so they can reduce bugs and development time in future game development. To be used with quickly generating game environments, the new method compares with the popular motion method, so which method is faster and can adapt to diverse games. The paper suggested that the Response of Speed method is a better method for optimizing frames and reducing the number of reacting seconds by showing a faster response and speed). With the method popularity of scrollers, many 2D cross-scroll games follow the formula of Dash, Shoot, Walk, Stay, and Crouch. With the development of game engines, it is becoming easier to implement them. Therefore, although the method presented in the above paper differs from the popular method, it is expected that there will be no great difficulty in applying it to the game because transplantation is easy. In the future, we plan to study to minimize the delay of each connection of the character motion so that the game can be optimized to best.

Application of frequency domain analysis for generation of seismic floor response spectra

  • Ghosh, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.17-26
    • /
    • 2000
  • This paper presents a case study with a multi-degree-of-freedom (MDOF) system where the Floor Response Spectra (FRS) have been derived from a large ensemble of ground motion accelerograms. The FRS are evaluated by the frequency response function which is calculated numerically. The advantage of this scheme over a repetitive time-history analysis of the entire structure for each accelerogram of the set has been highlighted. The present procedure permits generation of FRS with a specified probability of exceedence.

The Characteristics of Motion Response of Stern Trawlers according to the Wave Height and the Ship's Speed in the Sea (선미식(船尾式) 트롤선(船)의 해양항행중(海洋航行中) 파고(波高)와 선속(船速)에 따른 선체(船体) 동요특성(動搖特性))

  • Kang, Il-Kwon;Park, Byung-Soo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.12 no.2
    • /
    • pp.199-212
    • /
    • 2000
  • It is very important to investigate the hull response of a fishing vessel in the sea to ensure the safe navigation and fishing operation in rough sea by preserving excellent sea keeping qualities. For this purpose, the author measured various responses of three stem trawlers in waves using real sea experimental measuring system. The author analyzed the experimental data using the statistical and spectral analyzing method to get the characteristics of the motion responses of the vessels according to the wave height and the ship's speed. The results obtained can be summarized as follows ; (1) Rather higher response of the pitch motion due to the wave height appeared in the head sea and the bow sea than any other wave direction without relevance to ship's size. In case of the roll motion, the beam sea and the quartering sea have a high response value. The period of peak of the pitch motion and the roll motion according to the wave height in each vessel has almost same value respectively. (2) The change of response of the pitch motions deeply depend on the ship's speed in the head sea and the bow sea, but not in the other wave direction. (3) The change of response of the roll motions in the beam sea, the quartering sea and the following sea are affected by the influence of the ship's speed in 5k't to 8k't, but not related to the ship's speed in out of that range.

  • PDF

Displacements, damage measures and response spectra obtained from a synthetic accelerogram processed by causal and acausal Butterworth filters

  • Gundes Bakir, Pelin;Richard, J. Vaccaro
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.409-430
    • /
    • 2006
  • The aim of this study is to investigate the reliability of strong motion records processed by causal and acausal Butterworth filters in comparison to the results obtained from a synthetic accelerogram. For this purpose, the fault parallel component of the Bolu record of the Duzce earthquake is modeled with a sum of exponentially damped sinusoidal components. Noise-free velocities and displacements are then obtained by analytically integrating the synthetic acceleration model. The analytical velocity and displacement signals are used as a standard with which to judge the validity of the signals obtained by filtering with causal and acausal filters and numerically integrating the acceleration model. The results show that the acausal filters are clearly preferable to the causal filters due to the fact that the response spectra obtained from the acausal filters match the spectra obtained from the simulated accelerogram better than that obtained by causal filters. The response spectra are independent from the order of the filters and from the method of integration (whether analytical integration after a spline fit to the synthetic accelerogram or the trapezoidal rule). The response spectra are sensitive to the chosen corner frequency of both the causal and the acausal filters and also to the inclusion of the pads. Accurate prediction of the static residual displacement (SRD) is very important for structures traversing faults in the near-fault regions. The greatest adverse effect of the high pass filters is their removal of the SRD. However, the noise-free displacements obtained by double integrating the synthetic accelerogram analytically preserve the SRD. It is thus apparent that conventional high pass filters should not be used for processing near-fault strong-motion records although they can be reliably used for far-fault records if applied acausally. The ground motion parameters such as ARIAS intensity, HUSID plots, Housner spectral intensity and the duration of strong-motion are found to be insensitive to the causality of filters.