• Title/Summary/Keyword: Motion Modeling

Search Result 1,125, Processing Time 0.024 seconds

Dynamics Analysis of a Multi-beam System Undergoing Overall Rigid Body Motion Employing Finite Element Method (유한요소법을 사용한 강체운동을 하는 다중보계의 동적 해석)

  • Choe, Sin;Yu, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2266-2273
    • /
    • 2000
  • Equations of motion of a multi-beam system undergoing overall rigid body motion are derived by employing finite element method. An orientation angle is employed to allow the arbitrary orientation o f the beam element. Modal coordinate reduction technique, which has been successfully utilized in the conventional linear modeling method, is employed for the present modeling method to reduce the computational effort. Different from the conventional linear modeling method, the present modeling method captures the motion-induced stiffness variations which are important for the dynamic analysis of structures undergoing overall rigid body motion. The numerical results are compared to those of a commercial program to verify the reliability of the present method.

Kinematic Modeling for a Type of Mobile Robot using Differential Motion Transformation (미소운동 변환방법을 이용한 몇가지 이동로봇의 기구학 모델)

  • Park, Jae-Han;Kim, Soon-Chul;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1145-1151
    • /
    • 2013
  • Kinematic modeling is a prerequisite for motion planning and the control of mobile robots. In this paper, we proposed a new method of kinematic modeling for a type of mobile robot based on differential motion transformation. The differential motion implies a small translation and rotation in three-dimensional space in a small time interval. Thus, transformation of the differential motion gives the velocity relationship, i.e., Jacobian between two coordinate frames. Since the theory of the differential motion transformation is well-developed, it is useful for the systematic velocity kinematic modeling of mobile robots. In order to show the validity for application of the differential motion transformation, we obtained velocity kinematic models for a type of exemplar mobile robot including spherical ballbots.

Modeling and Motion Control of Piezoelectric Actuator (비선형성을 고려한 압전소자의 모델링 및 운동제어)

  • 박은철;김영식;김인수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.630-637
    • /
    • 2003
  • This paper proposes a new modeling scheme to describe the hysteresis and the dynamic characteristics of piezoelectric actuators in the inchworm and develops a control algorithm for the precision motion control. From the analysis of piezoelectric actuator behaviors, the hysteresis can be described by the functions of a maximum input voltage. The dynamic characteristics are also identified by the frequency domain modeling technique based on the experimental data. For the motion control, the hysteresis behavior is compensated by the inverse hysteresis model. The dynamic stiffness of an inchworm is generally low compared to its driving condition, so mechanical vibration may degenerate the motion accuracy of the inchworm. Therefore, the sliding mode control and the Kalman filter are developed for the precision motion control of the inch-warm. To demonstrate the effectiveness of the proposed modeling schemes and control algorithm, experiment validations are performed.

  • PDF

Modeling and Verification for Stability Analysis of Axially Oscillating Cantilever Beams (축 방향 왕복운동을 하는 외팔보의 안정성 해석을 위한 모델링 및 검증)

  • Kim, Sung-Do;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.176-182
    • /
    • 2006
  • Modeling and verification for stability analysis of axially oscillating cantilever beams are investigated in this paper Equations of motion for the axially oscillating beams are derived and transformed into dimensionless forms. The equations include harmonically oscillating parameters which are related to the motion-induced stiffness variation. stability diagram is obtained by using the multiple scale perturbation method. To verify the accuracy of the modeling method, several points in the plane of the stability diagram are presented and solved. The present modeling method proves to be as accurate as a nonlinear finite element modeling method.

Modeling and Verification for Stability Analysis of Axially Oscillating Cantilever Beams (축 방향 왕복운동을 하는 외팔보의 안정성 해석을 위한 모델링 및 검증)

  • Kim, Sung-Do;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.708-713
    • /
    • 2005
  • Modeling and verification for stability analysis of axially oscillating cantilever beams are investigated in this paper. Equations of motion for the axially oscillating beams are derived and transformed into dimensionless forms. The equations include harmonically oscillating parameters which are related to the motion-induced stiffness variation. Stability diagram is obtained by using the multiple scale perturbation method. To verify the accuracy of the modeling method, several points in the plane of the stability diagram are presented and solved. The present modeling method proves to be as accurate as a nonlinear finite element modeling method.

  • PDF

Motion Sensing Algorithm for SAR Image Using Pre-Parametric Error Modeling (매개변수 사전 오차 모델링 기법을 이용한 SAR 요동측정 알고리즘)

  • Park, Woo Jung;Park, Yong-gonjong;Lee, Soojeong;Park, Chan Gook;Song, Jong-Hwa;Bae, Chang Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.566-573
    • /
    • 2019
  • In order to obtain high-quality images by motion compensation in the airborne synthetic aperture radar (SAR), accurate motion sensing in image acquisition section is necessary. Especially, reducing relative position error and discontinuity in motion sensing is important. To overcome the problem, we propose a pre-parametric error modeling (P-PEM) algorithm which is a real-time motion sensing algorithm for the airborne SAR in this paper. P-PEM is an extended version of parametric error modeling (PEM) method which is a motion sensing algorithm to mitigate the errors in the previous work. PEM estimates polynomial coefficients of INS error which can be assumed as a polynomial in the short term. Otherwise, P-PEM estimates polynomial coefficients in advance and uses at image acquisition section. Simulation results show that the P-PEM reduces relative position error and discontinuity effectively in real-time.

A Sweep Surface Based on Bivariate B-spline Motion

  • Yoon, Seung-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.1026-1039
    • /
    • 2014
  • We present a new method for generating sweep surfaces using bivariate B-spline motion. The sweep surface is defined as the trace of a single point under bivariate B-spline motion. Direct manipulation of the sweep surface is achieved by controlling its motion components while producing various editing effects. We demonstrate the effectiveness of our technique by modeling and deforming various three-dimensional shapes.

RGB Motion Segmentation using Background Subtraction based on AMF

  • Kim, Yoon-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.2
    • /
    • pp.81-87
    • /
    • 2013
  • Motion segmentation is a fundamental technique for analysing image sequences of real scenes. A process of identifying moving objects from data is a typical task in many computer vision applications. In this paper, we propose motion segmentation that generally consists from background subtraction and foreground pixel segmentation. The Approximated Median Filter (AMF) was chosen to perform background modeling. Motion segmentation in this paper covers RGB video data.

RGB Motion Segmentation using Background Subtraction based on AMF

  • Kim, Yoon-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.61-67
    • /
    • 2014
  • Motion segmentation is a fundamental technique for analysing image sequences of real scenes. A process of identifying moving objects from data is a typical task in many computer vision applications. In this paper, we propose motion segmentation that generally consists from background subtraction and foreground pixel segmentation. The Approximated Median Filter(AMF) was chosen to perform background modeling. Motion segmentation in this paper covers RGB video data.

Dynamic Analysis of Simply Supported Flexible Structures Undergoing Large Overall Motion (전체운동을 하는 단순지지 유연 구조물의 동적해석)

  • 유홍희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1363-1370
    • /
    • 1995
  • A nonlinear dynamic modeling method for simply supported structures undergoing large overall motion is suggested. The modeling method employs Rayleigh-Ritz mode technique and Von Karman nonlinear strain measures. Numerical study shows that the suggested modeling method provides qualitatively different results from those of the Classical Linear Cartesian modeling method. Especially, natural frequency variations and residual deformation due to membrane strain effects are observed in the numerical results obtained by the suggested modeling method.