• 제목/요약/키워드: Motion Mechanism

검색결과 1,150건 처리시간 0.027초

Robust Minimum-Time Control with Coarse/Fine Dual-Stage Mechanism

  • Kwon, Sang-Joo;Cheong, Joo-No
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1834-1847
    • /
    • 2006
  • A robust minimum-time control (RMTC) strategy is addressed and it is extended to the dual-stage servo design. Rather than conventional switching type sub-optimal controls, it is a reference following control approach where the predetermined minimum-time trajectory (MTT) is tracked by the perturbation compensator based feedback controller. First, the minimum-time trajectory for a mass-damper system is derived. Then, the perturbation compensator to achieve robust tracking performance in spite of model uncertainty and external disturbance is suggested. The RMTC is also applied to the dual-stage positioner which consists of coarse actuator and fine one. To best utilize the actuation redundancy of the dual-stage mechanism, a null-motion controller to actively regulate the relative motion between the two stages is formulated. The performance of RMTC is validated through simulation and experiment.

PZT를 이용한 초정밀 구동의 문헌적 고찰 (Review of A High Precision Actuator Mechanism Using PZT)

  • 최현석;이준;정명철;윤덕원;한창수;홍원표;강응구;최헌종
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.524-529
    • /
    • 2004
  • Recently High precision positioning device is used in many kinds of manufacturing and scientific instruments. Piezoelectric transducer is applied to the positioning devive as actuator, PZT has a high resolution, however, moving range is short. Many researcher have developed the mechanism for increasing a motion range. The types of increasing motion range mechanism with PZT are inertial slider, friction driver, ultrasonic motor, etc. In this paper we discuss the review of the hish precision actuator mechanism with PZT. Many kinds of mechanism for high precision are shown and compared.

  • PDF

미세 초음파 타원궤적 진동절삭 (I) 미세 초음파 가공을 위한 타원 절삭경로 생성 (Micro Ultrasonic Elliptical Vibration Cutting (I) The Generation of a Elliptical Vibration Cutting Motion for Micro Ultrasonic Machining)

  • 노병국;김기대
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.190-197
    • /
    • 2005
  • For precise micro-grooving and surface machining, a mechanism for creating elliptical vibration cutting (EVC) motion is proposed which uses two parallel piezoelectric actuators. And based on its kinematical analysis, variations of EVC path are investigated as a function of dimensional changes in the mechanism, phase difference and amplitude of excitation sinusoidal voltages. Using the proposed PZT mechanism, various types of two dimensional EVC paths including one dimensional vibration cutting path along the cutting direction and thrust direction can be easily obtained by changing the phase lag, the amplitude of the piezoelectric actuators, and the dimension of the mechanism.

비데오 데크 메카니즘의 로딩블럭 해석 및 설계 (Design and Analysis of Loading Block of VCR Deck Mechanism)

  • 박태원;김광배
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.502-511
    • /
    • 1994
  • A video deck mechanism is composed of various cams, links, and gears, and it requires precise movement. So kinematic motion between parts should be considered to get desired movement depending on the timing chart which defines movement of each part to get desired mode. Also dynamic effects should be considered to get right tape tension and to estimate motor force required to obtain accurate motion. The design process of the deck mechanism of VCR is explained briefly. The loading block of the deck mechanism is divided into a tape translational group and a brake control group. Each group is modeled for kinematic and dynamic analysis. Finally, two groups are combined together to analyze the loading block of the deck mechanism. Results are used to understand and modify an existing design.

가이드레일부착형 창문청소 장치의 동작 메카니즘 개발 (Development of Motion Mechanism for Guiderail Mounting Type Window Cleaning Device)

  • 김균태;전영훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.255-256
    • /
    • 2016
  • In order to overcome the limitation of conventional cleaning method by workers, variety attempts to develop a window cleaning apparatus has been tried. However, the existing cleaning devices were lack of consideration for avoiding projection parts of the window such as frames or profiles. In this study, operating mechanism of cleaning tool for avoiding the projections parts using a two-axis robot is proposed. Proposed mechanism is that a wiper are reposed in a relatively stationary in the vicinity of the projection and avoided the projection in this state. It is expected that the mechanism is the base of driving cleaning tool part in the new window cleaning apparatus.

  • PDF

디더 운동이 캡슐형 내시경의 마찰계수 감소에 미치는 영향 (Influence of Dither Motion on the Friction Coefficient of a Capsule-type Endoscope)

  • 홍예선;최민준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1068-1073
    • /
    • 2005
  • Development of a locomotive mechanism for the capsule type endoscopes will largely enhance the ability to diagnose disease of digestive organs. In connection with it, most of the researches have focused on an installable locomotive mechanism in the capsule. In this paper, it is introduced that the movement of a capsule type endoscope in digestive organ can be manipulated by magnetic force produced outside human body. Since the magnetic force is provided by permanent magnets, no additional power supply to the capsule is required. Using a robotic manipulator for locating the external magnet, the capsule motion control system can cover the whole human digestive organs. This study is particularly concentrated on dither motion effect to improve the mobility of capsule type endoscope. It was experimentally found out that the friction coefficient between the capsule and digestive organ can be remarkably reduced by superposing yawing or rolling dither motion on the translatory motion. In this paper, the experimental results obtained while the direction, amplitude and frequency of sinusoidal dither motion were changed are reported.

  • PDF

탄성힌지를 이용한 초정밀 통신용 미러 구동 6축 메커니즘 구현과 실험적 강성 모델링 (Design of 6 DOF Mechanism with Flexure Joints for telecommunication mirror and Experimental Stiffness Modeling)

  • 강병훈
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권6호
    • /
    • pp.169-174
    • /
    • 2019
  • 최근 원격통신용 미러의 정밀 제어를 위한 초정밀 구동 메커니즘 설계에 많은 연구가 진행되고 있다. 본 연구에서는 초정밀 구동 메카니즘의 구성 조건을 만족하기 위하여 마이크로미터(um)의 분해능을 가진 탄성힌지(flexure hinge)를 이용한 6자유도 스테이지 메카니즘을 제안한다. 탄성힌지를 조인트로 이용하여 공간상의 6자유도 스테이지를 설계하고, 탄성힌지의 탄성변형을 이용하여 반복적인 운동을 제공한다. 공간상의 6 자유도 스테이지를 개발하기 위하여 탄성힌지를 이용한 평면상의 2 자유도 스테이지를 설계하고 이를 조합하여 6 자유도 스테이지를 제작하였다. 유한요소 해석을 통하여 단위입력에 대한 최대 출력변위를 생성하는 탄성힌지의 크기와 형상을 결정하였고, 전체 스테이지를 구동 할 때, 개별 탄성힌지가 탄성 영역 안에서 구동됨을 유한요소 해석을 통하여 증명하였다. 또한 전체 스테이지 구동의 변위보정과 강성검증을 실험적으로 증명하기 위하여 CCD 레이저 변위센서를 이용한 스테이지 변위 해석을 진행하였다.

VPMM 시험을 통한 무인 수중 글라이더 모형의 동유체력 계수 추정에 관한 연구 (Experimental Study on Hydrodynamic Coefficients of Autonomous Underwater Glider Using Vertical Planar Motion Mechanism Test)

  • 정진우;정재훈;김인규;이승건
    • 한국해양공학회지
    • /
    • 제28권2호
    • /
    • pp.119-125
    • /
    • 2014
  • A vertical planar motion mechanism(VPMM) test was used to increase the prediction accuracy for the maneuverability of an underwater glider model. To improve the accuracy of the linear hydrodynamic coefficients, the analysis techniques of a pure heave test and pure pitch test were developed and confirmed. In this study, the added mass and damping coefficient were measured using a VPMM test. The VPMM equipment provided pure heaving and pitching motions to the underwater glider model and acquired the forces and moments using load cells. As a result, the hydrodynamic coefficients of the underwater glider could be acquired after a Fourier analysis of the forces and moments. Finally, a motion control simulation was performed for the glider control system, and the results are presented.

요동운동 롤러 종동절과 디스크 캠 기구의 운동해석을 위한 원호 접근법에 관한 연구 (A Study on circular Arc Approach for Motion Analysis of Oscillating Roller Follower and Disk Cam Mechanisms)

  • 구병국;신중호;윤호업;장옥화
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.523-526
    • /
    • 2000
  • This paper performs the motion analysis for a disk cam and a follower mechanism using a circular arc method, a coordinate transformation method and an instant velocity method in order to find a contact point between the cam and the follower. Based on the proposed method, the displacement and the velocity are calculated by using the geometric relationships of the cam mechanism. Also, the acceleration is determined on using the central difference method. As the results, this paper presents the original curve and the analyzed curve for the motion analysis of the disk cam for an example.

  • PDF

압전 바이모프의 타원운동을 이용한 정밀 이동기구 개발 (Development of precision Moving Mechanism using Ellipsoidal Motion of piezoelectric Bimorph)

  • 박한길;김준형;김수현;곽윤근
    • 한국정밀공학회지
    • /
    • 제20권4호
    • /
    • pp.151-157
    • /
    • 2003
  • A new type of precision actuator is developed using piezoelectric bimorphs. This type of actuator is applicable for the flat surface or in-pipe system and can make forward and backward motion. Two bimorphs are linked serially and two different phased voltages are applied to each bimorph. Therefore, The end of the bimorph makes ellipsoidal motion. The device moves by the friction force between the rubber attached at the bimorph end and the inner surface of the pipe. As the results, the driving range of the device is about 0~18Hz and the device guarantees very high linearity at low frequency, 0~1 Hz. The maximum velocity of the device is about 6mm/s at 10Hz. The developed mechanism is very simple and use piezoelectric bimorph. So, it is possible to miniaturize and educe the power consumption.