• Title/Summary/Keyword: Motion Effect

Search Result 3,550, Processing Time 0.036 seconds

An Improved Method for the Identification of the Space-Vriant Motion Blur using RATS (RATS를 이용한 개선된 지역적 모션 블러 크기 추출 기법)

  • Yang, Hong-Taek;Hwang, Joo-Yeon;Park, Doo-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.1
    • /
    • pp.125-133
    • /
    • 2008
  • Motion blur is a blurring effect on an image caused by the relative motion between the camera and objects in the scene. When an image is captured, motion blurs are caused by relative motion between the camera and the scene. When different objects are moving at different speeds, the characteristics of the blur effect for each object appear differently. To restore the spatially variant blurred image, each of the blur extents should be identified. In this paper, we propose a new method for the identification of blur extent locally using RATS from the image in which the spatially variant motion blur is caused Experiment shows that the proposed algorithm successfully segments the objects with different blurs and identifies the blur extents quite well.

  • PDF

Physical Therapy Following Arthroscopic Rotator Cuff Repair with Graft Augmentation: A Case Report with Magnetic Resonance Imaging

  • Kim, Hyun-Joong;Lee, Seungwon
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.4
    • /
    • pp.463-469
    • /
    • 2021
  • Objective: If non-surgical treatment fails, arthroscopic rotator cuff repair (ARCR) is recommended, and ARCR considers graft augmentation in consideration of size, direction, and re-tear. It is reported to have potential benefits by improving the healing rate as it can fill the gaps that have been left behind. The purpose of this study is to investigate the effect of structural changes observed after ARCR on muscle action through magnetic resonance imaging and to investigate the effect of appropriate physical therapy required for graft augmentation in the general ARCR rehabilitation protocol. Case presentation: A 47-year-old male hospitalized for postoperative rehabilitation following ARCR participated in a 5-week physical therapy intervention. The postoperative day was 6 months, but due to shooting pain and shoulder dysfunction,and the movement of the shoulder was compensatory motion, not normal motion. Physical agents, manual therapy, and supervised exercise for 110 minutes per session were performed 3 times a week, and pain intensity, range of motion, function, and strength were evaluated. Results: As a result of the study, the patient showed positive improvement in pain intensity, range of motion, function, and strength. In addition, normal scapulohumeral rhythm movement was observed. Conclusions: According to the results of this case, appropriate physical therapy according to the compensatory motion shown in the structural changes after ARCR can positively improve the pain intensity, range of motion, function, and strength of ARCR patients.

Investigation of Effect of Input Ground Motion on the Failure Surface of Mountain Slopes

  • Khalid, Muhammad Irslan;Pervaiz, Usman;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.7
    • /
    • pp.5-12
    • /
    • 2021
  • The reliable seismic stability evaluation of the natural slopes and geotechnical structures has become a critical factor of the design. Pseudo-static or permanent displacement methods are typically employed to evaluate the seismic slope performance. In both methods, the effect of input ground motion on the sliding surface is ignored, and failure surface from the limit equilibrium method is used. For the assessment of the seismic sensitivity of failure surface, two-dimensional non-linear finite element analyses are performed. The performance of the finite element model was validated against centrifuge measurements. A parametric study with a range of input ground motion was performed, and numerical results were used to assess the influence of ground motion characteristics on the sliding surface. Based on the results, it is demonstrated that the characteristics of input ground motion have a significant influence on the location of the seismically induce failure surface. In addition to dynamic analysis, pseudo-static analyses were performed to evaluate the discrepancy. It is observed that sliding surfaces developed from pseudo-static and dynamic analyses are different. The location of the failure surface change with the amplitude and Tm of motion. Therefore, it is recommended to determine failure surfaces from dynamic analysis

Experimental study on the tension of cables and motion of tunnel element for an immersed tunnel element under wind, current and wave

  • Wu, Hao;Rheem, Chang-Kyu;Chen, Wei;Xu, Shuangxi;Wu, Weiguo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.889-901
    • /
    • 2021
  • The tension of cables and motion response significantly affect safety of an immersed tunnel element in the immersion process. To investigate those, a hydrodynamic scale-model test was carried out and the model experiments was conducted under wind, current and wave loads simultaneously. The immersion standby (the process that the position of the immersed tunnel element should be located before the immersion process) and immersion process conditions have been conducted and illustrated. At the immersion standby conditions, the maximum force of the cables and motion is much larger at the side of incoming wind, wave and current, the maximum force of Element-6 (6 cables directly tie on the element) is larger than for Pontoon-8 (8 cables tie on pontoon of the element), and the flexible connection can reduce the maximum force of the mooring cables and motion of element (i.e. sway is expecting to decrease approximate 40%). The maximum force of the mooring cables increases with the increase of current speed, wave height, and water depth. The motion of immersed tunnel element increases with increase of wave height and water depth, and the current speed had little effect on it. At the immersion process condition, the maximum force of the cables decrease with the increase of immersion depth, and dramatically increase with the increase of wave height (i.e. the tension of cable F4 of pontoons at wave height of 1.5 m (83.3t) is approximately four times that at wave height of 0.8 m). The current speed has no much effect on the maximum force of the cables. The weight has little effect on the maximum force of the mooring cables, and the maximum force of hoisting cables increase with the increase of weight. The maximum value of six-freedom motion amplitude of the immersed tunnel element decreases with the increase of immersion depth, increase with the increase of current speed and wave height (i.e. the roll motion at wave height of 1.5 m is two times that at wave height of 0.8 m). The weight has little effect on the maximum motion amplitude of the immersed tunnel element. The results are significant for the immersion safety of element in engineering practical construction process.

The Sloshing Effect on the Roll Motion and 2-DoF Motions of a 2D Rectangular Cylinder (2차원 사각형 주상체의 횡동요 및 2자유도 운동에 미치는 슬로싱의 영향)

  • Kim, Yun-Ho;Sung, Hong-Gun;Cho, Seok-Kyu;Choi, Hang-Shoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.2
    • /
    • pp.69-78
    • /
    • 2013
  • This study is constructed to investigate the sloshing effect on the motions of a two-dimensional rectangular cylinder experimentally and numerically. The modes of motion under consideration are sway and roll, and also experimental cases are divided by two categories; 1-DoF roll motion and 2-DoF motion (Coupling sway and roll). It is found that the sway response is considerably affected by the motion of the fluid, particularly near the sloshing natural frequency, while the roll response changes comparatively small. The dominant mode of motion is analyzed for 2-DoF experiments as well. The measured data for 1-DoF motions is compared with numerical results obtained by the Multi-modal approach. The numerical schemes vary in detail with the number of dominant sloshing modes; i.e. there is a single dominant mode for the Single-dominant method, while the Model 2 method assumes that the first two modes are superior. For the roll motion, numerical results obtained by the two different methods are relatively in good agreement with the experiments, and these two results are similar in most wave frequency range. However, the discrepancies are apparent where the fluid motion is not governed by a single mode. But both of numerical methods over-predict the motion at the vicinity of the sloshing natural frequency. In order to correct the discrepancy, the modal damping needs to be investigated more precisely. Furthermore, another multi-modal approach, such as the Boussinesq-type method, seems to be required in the region of the intermediate liquid.

The Effect of Motion Activities Utilizing Various Materials on Young Children’s Emotional Intelligence (다양한 소재를 활용한 동작활동이 유아의 정서지능에 미치는 효과)

  • 김영주;송영나
    • Journal of the Korean Home Economics Association
    • /
    • v.42 no.4
    • /
    • pp.155-165
    • /
    • 2004
  • The purpose of this study was to examine the effect of motion activities utilizing various of materials(ex, using fabric, stone, wood, percussion instrument) on young children's emotional intelligence and its subareas, including the an ability to identify and control their on emotions, self-motivating skills, the ability to identify other's emotional state, and interpersonal skills. The subjects in this study were 60, 5-year-old preschoolers attending D kindergarten in U city. The experiment w3s implemented in an experimental group 36 times for 12 weeks, three times a week, by using various of materials. The control group was only exposed to the routine phvsical programs according to the 6th curricula. To see if there were any disparities between pretest and posttest results, paired t-test was carried out, and t-test by independent sampling was employed to find out intergroup gaps. Following are the findings of this study. First, the motion activities utilizing various materials made a significant difference to the young children's emotional intelligence. Second, the motion activities atilizing various materials was effective for their ability to identify their own emotions, ability to control their own emotions and self-motivation. Third, the motion activities utilizing various materials didn't bring any significant changes to the young children's ability to identify other's emotions and their interpersonal skills. Thus, motion activities that took advantage of various materials had a positive impact on the development of the emotional intelligence of the young children. We suggest that more attention be paid to motion activities and the formulation of various and systematic motion programs as a way to raise emotional intelligence.

Analysis on the motion characteristics of surface XY aerostatic stage (평면 XY 공기정압 스테이지의 운동특성 분석)

  • 황주호;박천홍;이찬홍;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.359-362
    • /
    • 2003
  • The aerostatic stage. which is used in semiconductor process, is demanded higher velocity and more precise accuracy for higher productivity and integrated performance. So, in the case of XY stage, H type structure, which is designed two co-linear axis of guide-way, driving force in one surface, has advantage of velocity and accuracy compared to conventional tacked type XY stage. To analyze characteristics of H type aerostatic stage, H type aerostatic surface XY stage is made, which is driven by linear motor and detected position with precise optical linear scale. And, analyze characteristics of motion error, effect of angular motion on positioning accuracy error and effect of simultaneous control on variation of velocity.

  • PDF

Effect of Brownian Motion in Heat Transfer of H2O-Cu Nanofluid using LBM

  • Li, Kui-Ming;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.7
    • /
    • pp.981-990
    • /
    • 2010
  • The main objective of this study is to investigate the fluid flow and the heat transfer characteristics of nanofluids using multi-phase thermal LBM and to realize theenhancement of heat transfer characteristics considered in the Brownian motion. In multi-phase, fluid component($H_2O$) is driven by Boussinesq approximation, and nanoparticles component by the external force gravity and buoyancy. The effect of Brownian motion as a random movement is modified to the internal velocity of nanoparticles(Cu). Simultaneously, the particles of both the phases assume the local equilibrium temperature after each collision. It has been observed that when simulating $H_2O$-Cu nanoparticles, the heat transfer is the highest, at the particle volume fraction 0.5% of the particle diameter 10 nm. The average Nusselt number is increased approximately by 33% at the particle volume fraction 0.5% of the particle diameter 10 nm when compared with pure water.

The Effect of Train Motion on Dynamic Characteristics of Current Collection System (고속전철의 주행조건이 집전계의 동특성에 미치는 영향)

  • Kim Jung-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.18-22
    • /
    • 2006
  • The dynamic characteristics of the current collection system are investigated by conducting a test run in which signals from accelerometers and load cells attached to the various parts of the pantograph are analyzed in both the time and frequency domains. The dynamic characteristics of the current collection system are found to be strongly influenced by the train speed; the fluctuation in the pantograph motion increases in direct proportion to the train speed. There exist two major fequency components in the pantograph motion related to the current collection, a speed-dependent component arising from the train traversing a span of the catenary, and a speed-independent component related to the pantograph resonant frequency. The train acceleration is also found to exert strong influence on the current collection system characteristics. The effect of the train motion is found to be stronger on the speed-dependent frequency component than on the speed-independent one.

The vertical spanning strip wall as a coupled rocking rigid body assembly

  • Sorrentino, Luigi;Masiani, Renato;Griffith, Michael C.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.4
    • /
    • pp.433-453
    • /
    • 2008
  • The equation of motion of a one way (vertical) spanning strip wall, as an assembly of two rigid bodies, is presented. Only one degree of freedom is needed to completely describe the wall response as the bodies are assumed to be perfectly rectangular and are allowed to rock but not to slide horizontally. Furthermore, no arching action occurs since vertical motion of the upper body is not restrained. Consequently, the equation of motion is nonlinear, with non constant coefficients and a Coriolis acceleration term. Phenomena associated with overburden to self weight ratio, motion triggering, impulsive energy dissipation, amplitude dependency of damping and period of vibration, and scale effect are discussed, contributing to a more complete understanding of experimental observations and to an estimation of system parameters based on the wall characteristics, such as intermediate hinge height and energy damping, necessary to perform nonlinear time history analyses. A comparison to a simple standing, or parapet, wall is developed in order to better highlight the characteristics of this assembly.