• Title/Summary/Keyword: Motion Data Processing

Search Result 401, Processing Time 0.035 seconds

Walking Motion Detection via Classification of EMG Signals

  • Park, H.L.;H.J. Byun;W.G. Song;J.W. Son;J.T Lim
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.84.4-84
    • /
    • 2001
  • In this paper, we present a method to classify electromyogram (EMG) signals which are utilized to be control signals for patient-responsive walker-supported system for paraplegics. Patterns of EMG signals for dierent walking motions are classied via adequate filtering, real EMG signal extraction, AR-modeling, and modified self-organizing feature map (MSOFM). More efficient signal processing is done via a data-reducing extraction algorithm. Moreover, MSOFM classifies and determines the classified results are presented for validation.

  • PDF

Multiple Dimension User Motion Detection System base on Wireless Sensors (무선센서 기반 다차원 사용자 움직임 탐지 시스템)

  • Kim, Jeong-Rae;Jeong, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.700-712
    • /
    • 2011
  • Due to recently advanced electrical devices, human can access computer network regardless of working location or time restriction. However, currently widely used mouse, joystick, and trackball input system are not easy to carry and they bound user hands exclusively within working space. Those make user inconvenient in Ubiquitous environments.. In this paper, we propose multiple dimension human motion detection system based on wireless sensor networks. It is a portable input device and provides easy installation process and unbinds user hands during input processing stages. Our implemented system is comprised of three components. One is input unit that senses user motions and transmits collected data to receiver. Second is receiver that conveys the received data to application, which runs on server computer. Third is application that performs command operations according to received data. Experiments shows that proposed system accurately detect the characteristics of user arm motions and fully support corresponding input requests.

A Study on Stable Motion Control of Humanoid Robot with 24 Joints Based on Voice Command

  • Lee, Woo-Song;Kim, Min-Seong;Bae, Ho-Young;Jung, Yang-Keun;Jung, Young-Hwa;Shin, Gi-Soo;Park, In-Man;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.1
    • /
    • pp.17-27
    • /
    • 2018
  • We propose a new approach to control a biped robot motion based on iterative learning of voice command for the implementation of smart factory. The real-time processing of speech signal is very important for high-speed and precise automatic voice recognition technology. Recently, voice recognition is being used for intelligent robot control, artificial life, wireless communication and IoT application. In order to extract valuable information from the speech signal, make decisions on the process, and obtain results, the data needs to be manipulated and analyzed. Basic method used for extracting the features of the voice signal is to find the Mel frequency cepstral coefficients. Mel-frequency cepstral coefficients are the coefficients that collectively represent the short-term power spectrum of a sound, based on a linear cosine transform of a log power spectrum on a nonlinear mel scale of frequency. The reliability of voice command to control of the biped robot's motion is illustrated by computer simulation and experiment for biped walking robot with 24 joint.

A Study on Motion Analysis and Shape Design of Inverse Cam Mechanism with Square Shaped follower (사각형상 종동캠을 갖는 Inverse Cam Mechanism의 운동해석과 형상설계에 관한 연구)

  • Shin J.H.;Kwon S.M.;Kim J.C.;Kim B.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1299-1302
    • /
    • 2005
  • Current mechanical devices are trending toward being a small size, high speedy, automation. For performing these functions, machinery elements organizing a machine should be designed exactly. Cams have high confidence and economics in ablility to transmit a motion. Accordingly, A cam mechanism is very important for processing the machine automatically. This paper introduce an inverse cam mechanism. A square shaped cam which cannot be commonly analyzed is designed and manufactured by using the NURBS interpolation algorithm. The objective of this paper is to develop a computer-aided design program. In this paper, a displacement curve of oscillating motion inverse cam mechanism with square shaped follower is analyzed. The data is redistibuted by the NURBS algorithm. A cam shape is designed by the instant velocity center method, and simulated to verify the validity of the operation state.

  • PDF

Gaussian Interpolation-Based Pedestrian Tracking in Continuous Free Spaces (연속 자유 공간에서 가우시안 보간법을 이용한 보행자 위치 추적)

  • Kim, In-Cheol;Choi, Eun-Mi;Oh, Hui-Kyung
    • The KIPS Transactions:PartB
    • /
    • v.19B no.3
    • /
    • pp.177-182
    • /
    • 2012
  • We propose effective motion and observation models for the position of a WiFi-equipped smartphone user in large indoor environments. Three component motion models provide better proposal distribution of the pedestrian's motion. Our Gaussian interpolation-based observation model can generate likelihoods at locations for which no calibration data is available. These models being incorporated into the particle filter framework, our WiFi fingerprint-based localization algorithm can track the position of a smartphone user accurately in large indoor environments. Experiments carried with an Android smartphone in a multi-story building illustrate the performance of our WiFi localization algorithm.

A Study on the New BC-ABBM Motion Estimation Algorithm for Low Bit Rate Video Coding (저 전송률 비디오 압축을 위한 새로운 BC-ABBM 움직임 추정 알고리즘에 관한 연구)

  • 이완범;김환용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7C
    • /
    • pp.946-953
    • /
    • 2004
  • Fast search and conventional boolean matching motion estimation algorithms reduce computational complexity and data processing time but this algorithms have disadvantages that is difficult of implementation of hardware because of high control overhead and that is less performance than Full search Algorithm(FA). This paper present new all binary block matching algorithm, called Bit Converted All Binary Block Matching(BC-ABBM). Proposed algorithm have performance closed to the FA by boolean only block matching that may be very efficiently implemented in hardware for low bit rate video communication. Simulation results show that the PSNR of the proposed algorithm is about 0.04dB loss than FA but is about 0.6 ∼ 1.4dB gain than fast search algorithm and conventional boolean matching algorithm.

Implementing Augmented Reality By Using Face Detection, Recognition And Motion Tracking (얼굴 검출과 인식 및 모션추적에 의한 증강현실 구현)

  • Lee, Hee-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.97-104
    • /
    • 2012
  • Natural User Interface(NUI) technologies introduce new trends in using devices such as computer and any other electronic devices. In this paper, an augmented reality on a mobile device is implemented by using face detection, recognition and motion tracking. The face detection is obtained by using Viola-Jones algorithm from the images of the front camera. The Eigenface algorithm is employed for face recognition and face motion tracking. The augmented reality is implemented by overlapping the rear camera image and GPS, accelerator sensors' data with the 3D graphic object which is correspond with the recognized face. The algorithms and methods are limited by the mobile device specification such as processing ability and main memory capacity.

Temporal Anti-aliasing of a Stereoscopic 3D Video

  • Kim, Wook-Joong;Kim, Seong-Dae;Hur, Nam-Ho;Kim, Jin-Woong
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • Frequency domain analysis is a fundamental procedure for understanding the characteristics of visual data. Several studies have been conducted with 2D videos, but analysis of stereoscopic 3D videos is rarely carried out. In this paper, we derive the Fourier transform of a simplified 3D video signal and analyze how a 3D video is influenced by disparity and motion in terms of temporal aliasing. It is already known that object motion affects temporal frequency characteristics of a time-varying image sequence. In our analysis, we show that a 3D video is influenced not only by motion but also by disparity. Based on this conclusion, we present a temporal anti-aliasing filter for a 3D video. Since the human process of depth perception mainly determines the quality of a reproduced 3D image, 2D image processing techniques are not directly applicable to 3D images. The analysis presented in this paper will be useful for reducing undesirable visual artifacts in 3D video as well as for assisting the development of relevant technologies.

  • PDF

A Study on Performance Improvement of Target Motion Analysis using Target Elevation Tracking and Fusion in Conformal Array Sonar (컨포멀 소나에서의 표적고각 추적 및 융합을 이용한 표적기동분석 성능향상 연구)

  • Lee, HaeHo;Park, GyuTae;Shin, KeeCheol;Cho, SungIl
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.320-331
    • /
    • 2019
  • In this paper, we propose a method of TMA(Target Motion Analysis) performance improvement using target elevation tracking and fusion in conformal array sonar. One of the most important characteristics of conformal array sonar is to detect a target elevation by a vertical beam. It is possible to get a target range to maximize advantages of the proposed TMA technology using this characteristic. And the proposed techniques include target tracking, target fusion, calculation of target range by multipath as well as TMA. A simulation study demonstrates the outstanding performance of proposed techniques.

Numerical analysis of two and three dimensional buoyancy driven water-exit of a circular cylinder

  • Moshari, Shahab;Nikseresht, Amir Hossein;Mehryar, Reza
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.219-235
    • /
    • 2014
  • With the development of the technology of underwater moving bodies, the need for developing the knowledge of surface effect interaction of free surface and underwater moving bodies is increased. Hence, the two-phase flow is a subject which is interesting for many researchers all around the world. In this paper, the non-linear free surface deformations which occur during the water-exit of a circular cylinder due to its buoyancy are solved using finite volume discretization based code, and using Volume of Fluid (VOF) scheme for solving two phase flow. Dynamic mesh model is used to simulate dynamic motion of the cylinder. In addition, the effect of cylinder mass in presence of an external force is studied. Moreover, the oblique exit and entry of a circular cylinder with two exit angles is simulated. At last, water-exit of a circular cylinder in six degrees of freedom is simulated in 3D using parallel processing. The simulation errors of present work (using VOF method) for maximum velocity and height of a circular cylinder are less than the corresponding errors of level set method reported by previous researchers. Oblique exit shows interesting results; formation of waves caused by exit of the cylinder, wave motion in horizontal direction and the air trapped between the waves are observable. In 3D simulation the visualization of water motion on the top surface of the cylinder and the free surface breaking on the front and back faces of the 3D cylinder at the exit phase are observed which cannot be seen in 2D simulation. Comparing the results, 3D simulation shows better agreement with experimental data, specially in the maximum height position of the cylinder.