• 제목/요약/키워드: Motion Damping system

검색결과 385건 처리시간 0.027초

Dynamic behavior of intake tower considering hydrodynamic damping effect

  • Uddin, Md Ikram;Nahar, Tahmina Tasnim;Kim, Dookie;Kim, Kee-Dong
    • Structural Engineering and Mechanics
    • /
    • 제82권3호
    • /
    • pp.355-367
    • /
    • 2022
  • The effect of hydrodynamic damping on intake tower is twofold: one is fluid damping and another is structural damping. Fluid damping can be derived analytically from the governing equation of the fluid-structure-interaction (FSI) problem which yields a very complicated solution. To avoid the complexity of the FSI problem water-tower system can be simplified by considering water as added mass. However, in such a system a reconsideration of structural damping is required. This study investigates the effects of this damping on the dynamic response of the intake tower, where, apart from the "no water (NW)" condition, six other cases have been adopted depending on water height. Two different cross-sections of the tower are considered and also two different damping properties have been used for each case as well. Dynamic analysis has been carried out using horizontal ground motion as input. Finally, the result shows how hydrodynamic damping affects the dynamic behavior of an intake tower with the change of water height and cross-section. This research will help a designer to consider more conservative damping properties of intake tower which might vary depending on the shape of the tower and height of water.

A Study for Damping Application to Response-controlled Structure

  • Shinozaki, Yozo;Mogi, Yoshihiro;Ota, Masaaki;Yoshikawa, Hiroaki
    • 국제초고층학회논문집
    • /
    • 제10권2호
    • /
    • pp.149-164
    • /
    • 2021
  • Most of high-rise buildings in Japan*1 are structure with damping systems recently. The design procedure is performance-based design (PBD), which is based on the nonlinear response history procedure (NRHP) using 2 or 3-dimentional frame model. In addition, hysteretic property of steel plates or velocity-dependent property of viscous dampers are common practice for the damping system. However, for the selection of damping system, the easy dynamic analysis of recent date may lead the most of engineers to focus attention on the maximum response only without thinking how it shakes. By nature, the seismic design shall be to figure out the action of inertia forces by complex & dynamic loads including periodic and pulse-like characteristics, what we call seismic ground motion. And it shall be done under the dynamic condition. On the contrary, we engineers engineers have constructed the easy-to-use static loads and devoted ourselves to handle them. The structures with damping system shall be designed considering how the stiffness & damping to be applied to the structures against the inertia forces with the viewpoint of dynamic aspect. In this paper we reconsider the role of damping in vibration and give much thought to the basic of shake with damping from a standpoint of structural design. Then, we present some design examples based on them.

무힌지 복합재 헬리콥터 로터 시스템의 진동 저감을 위한 점탄성 감쇠처리 해석 및 공탄성 연구 (Viscoelastic Damping Treatment Analysis and Aeroelasticity for Vibration Reductions of a Hingeless Composite Helicopter Rotor System)

  • 황호연
    • 한국항공운항학회지
    • /
    • 제15권3호
    • /
    • pp.6-14
    • /
    • 2007
  • In this research, vibration reduction and aeroelastic stability of a composite hingeless rotor hub flexure with viscoelastic constrained layer damping treatment(CLDT) were investigated. The composite flexures with viscoelastic CLDT were applied to hingeless rotor system to improve the in-plane stability of the lead-lag motion causing resonance. The modal test was performed and dynamic properties(natural frequency and loss factor) were acquired. Also, complex eigenvalue analysis(SOLlO7) in the NASTRAN structural analysis module was performed and compared with results of the modal test. To insure aeroelastic stability, damping ratio analyses of the hingeless rotor system with CLDT were accomplished at hovering condition due to collective pitch angle changes. Satisfactory results of increasing structural damping and stability were obtained.

  • PDF

연속제어방식의 반능동형 전자제어 현가장치의 가변댐퍼 감쇠력 특성 연구 및 차량 운동성능에 미치는 효과 분석 (A study on the variable damping characteristics of the continuous controlled semi-active suspension system and the effect analysis of the vehicles motion performance)

  • 소상균;조경일
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.190-198
    • /
    • 1999
  • Continuously controlled semi-active suspension system may improve ride and handling properties. Here, as a mechanism to control the fluid flow solenoid valve mechanism is introduced and added to the basic passive damper to create damping forces of the shock absorbers. The system may produce continuously controlled damping forces in both solenoid valve only and combination with passive shock absorber including fluid flow is studied, and then the combined model is added to the full vehicle model to evaluate its ride and handling performance. Finally, the simulation results are compared to the vehicle models having similar suspension system.

  • PDF

지진특성에 따른 MR 감쇠기가 설치된 단자유도 구조물의 등가감쇠비 (Equivalent damping ratio based on earthquake characteristics of a SDOF structure with an MR damper)

  • 문병욱;박지훈;이성경;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.459-464
    • /
    • 2007
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. Frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally, response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

  • PDF

Development of a methodology for damping of tall buildings motion using TLCD devices

  • Diana, Giorgio;Resta, Ferruccio;Sabato, Diego;Tomasini, Gisella
    • Wind and Structures
    • /
    • 제17권6호
    • /
    • pp.629-646
    • /
    • 2013
  • One of the most common solutions adopted to reduce vibrations of skyscrapers due to wind or earthquake action is to add external damping devices to these structures, such as a TMD (Tuned Mass Damper) or TLCD (Tuned Liquid Column Damper). It is well known that a TLCD device introduces on the structure a nonlinear damping force whose effect decreases when the amplitude of its motion increases. The main objective of this paper is to describe a Hardware-in-the-Loop test able to validate the effectiveness of the TLCD by simulating the real behavior of a tower subjected to the combined action of wind and a TLCD, considering also the nonlinear effects associated with the damping device behavior. Within this test procedure a scaled TLCD physical model represents the hardware component while the building dynamics are reproduced using a numerical model based on a modal approach. Thanks to the Politecnico di Milano wind tunnel, wind forces acting on the building were calculated from the pressure distributions measured on a scale model. In addition, in the first part of the paper, a new method for evaluating the dissipating characteristics of a TLCD based on an energy approach is presented. This new methodology allows direct linking of the TLCD to be directly linked to the increased damping acting on the structure, facilitating the preliminary design of these devices.

MR 감쇠기가 설치된 단자유도 구조물의 지진응답에 기초한 등가감쇠비 (Equivalent damping ratio based on the earthquake response of a SDOF structure with a MR damper)

  • 박지훈;문병욱;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.879-885
    • /
    • 2006
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally, response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

  • PDF

지진특성에 따른 MR감쇠기가 설치된 단자유도 구조물의 등가감쇠비 (Equivalent Damping Ratio Based on Earthquake Characteristics of a SDOF Structure with an MR Damper)

  • 문병욱;박지훈;이성경;민경원
    • 한국소음진동공학회논문집
    • /
    • 제18권1호
    • /
    • pp.87-93
    • /
    • 2008
  • Seismic control performance of MR dampers, which have severe nonlinearity, varies with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. Frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally. response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

디지털 카메라를 이용한 구조물의 동특성 추출 (Modal Parameter Extraction Using a Digital Camera)

  • 김병화
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.61-68
    • /
    • 2008
  • A set of modal parameters of a stay-cable have been extracted from a moving picture captured by a digital camera supported by shaking hands. It is hard to identify the center of targets attached on the cable surface from the blurred cable motion image, because of the high speed motion of cable, low sampling frequency of camera, and the shaking effect of camera. This study proposes a multi-template matching algorithm to resolve such difficulties. In addition, a sensitivity-based system identification algorithm is introduced to extract the natural frequencies and damping ratios from the ambient cable vibration data. Three sets of vibration tests are conducted to examine the validity of the proposed algorithms. The results show that the proposed technique is pretty feasible for extracting modal parameters from the severely shaking motion pictures.

  • PDF

카메라를 이용한 구조물의 동특성 추출 (Modal Parameter Extraction Using a Digital Camera)

  • 김병화
    • 한국소음진동공학회논문집
    • /
    • 제18권12호
    • /
    • pp.1229-1236
    • /
    • 2008
  • A set of modal parameters of a stay-cable have been extracted fi:on a moving picture captured by a digital camera supported by shaking hands. It is hard to identify the center of targets attached on the cable surface from the blurred cable motion image, because of the high speed motion of cable, low sampling frequency of camera, and the shaking effect of camera. This study proposes a multi-template matching algorithm to resolve such difficulties. In addition, a sensitivity-based system identification algorithm is introduced to extract the natural frequencies and damping ratios from the ambient cable vibration data. Three sets of vibration tests are conducted to examine the validity of the proposed algorithms. The results show that the proposed technique is pretty feasible for extracting modal parameters from the severely shaking motion pictures.