• Title/Summary/Keyword: Motion Damping system

Search Result 389, Processing Time 0.024 seconds

A Study on the Dynamics Modeling of Hydrostatic tables (유정압안내면의 동적 Modeling에 관한 연구)

  • 노승국;이찬흥;박천홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.643-647
    • /
    • 1996
  • The dynamic behavior of hydrostatic table is represented as the theoretical model, 1-dof, 2-dof rigid body spring-damper system, and finite element model. By the experimental and theoretical methods, the validity of these models and some other dynamic behaviors, such as the effects of unbalanced load and three dimensional motion, are investigated. To make easier to consider the dynamic behavior of hydrostatic table in design process, the stiffness and damping coefficients are calculated using the simple approximation method delived from the mass flow continuity condition, and compared with experimental results.

  • PDF

A study of the optimum draft of multiple resonance power buoys for maximizing electric power production

  • Kweon, Hyuck-Min;Cho, Hong-Yeon;Cho, II-Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.813-825
    • /
    • 2014
  • To maximize electric power production using wave energy extractions from resonance power buoys, the maximum motion displacement spectra of the buoys can primarily be obtained under a given wave condition. In this study, wave spectra observed in shoaling water were formulated. Target resonance frequencies were established from the arithmetic means of modal frequency bands and the peak frequencies. The motion characteristics of the circular cylindrical power buoys with corresponding drafts were then calculated using numerical models without considering PTO damping force. Results showed that the heave motions of the power buoys in shoaling waters with insufficient drafts produced greater amplification effects than those in deep seas with sufficient drafts.

Drift Motion Analyses for a FPSO with Spread Mooring Systems (다점 계류된 원유 저장선에 대한 표류 운동 해석)

  • 이호영;임춘규;신현경
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.222-227
    • /
    • 2001
  • The time simulation of slow drift motions of moored FPSO in waves is presented. The equation of motion based on Cummin's theory of impulse responses are employed, and are consisted of horizonal plane -surge, sway and yaw. The added mass coefficients, wave damping coefficients, first order wave exciting forces and the second order wave drift forces involved in the equations are obtained from a three-dimensional panel method in the frequency domain. The mooring lines are modeled quasistatically as catenary for chains and touchdown. As for numerical example, time domain analyses are carried out for a box-type FPSO in long crest irregular wave condition.

  • PDF

Seismic behavior of three dimensional concrete rectangular containers including sloshing effects

  • Mirzabozorg, H.;Hariri-Ardebili, M.A.;Nateghi A., R.
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.79-98
    • /
    • 2012
  • In the present paper, the three-dimensional model of a typical rectangular concrete tank is excited using an artificial and a natural three components earthquake ground motion and the staggered displacement method is utilized for solving the coupled problem of the tank-contained liquid system in time domain. In the proposed method, surface sloshing of the liquid is taken into account in addition to the impulsive term and the appropriate damping values are applied on both of them. The resulted responses are compared with those obtained from the ABAQUS finite element software. It is found that the convective term affects responses extensively and must be considered in seismic design/safety assessment of storage tanks. In addition, the utilized method for solving the coupled problem is stable during the conducted general dynamic analyses and is able to capture the expected phenomena.

The Equivalent Value of the Linearized Method for the Ship Motion in Irregular Sea Waves (불규칙(不規則) 해양파(海洋波)에 대(對)한 선체운동(船體運動)의 등가선형화(等價線型化) 방법(方法)에 관(關)하여)

  • Bong-Ku,Woo
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.8 no.2
    • /
    • pp.25-34
    • /
    • 1971
  • The characters of linear response of ship among irregular waves were researched. But nonlinear characters of ship motion in irregular waves have not been considered. Then the author showed a method to linearize nonlinearity of damping coefficient of ship by making statistically equivalent linear theory and get equivalent gain K from the condition that the difference of variance between linear response and approximate response is minimum and show that the results of correlogram and spectrum, obtained from this method, for model 700 GT Ferry boat agree with the actual response. The author pays a particular attention not to the nonlinear element but to nonlinear system itself.

  • PDF

Road Adaptive Skyhook Control and HILS for Semi-Active Macpherson Suspension Systems (맥퍼슨형 반능동 현가장치의 노면적응형 스카이훅 제어와 HILS)

  • 박배정;홍금식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.34-44
    • /
    • 2000
  • In this paper, a modified skyhook control for the semi-active Macpherson suspension system is investigated. A new model for the semi-active type suspension, which incorporates the rotational motion of the unsprung mass, is introduced and an output feedback control law using the skyhook control method is derived. The gains in the skyhook controller are adaptively adjusted by estimating the road conditions. Because two vertical acceleration sensors, one for the sprung mass and another for the unsprung mass, are used rather than using the angle sensor for the rotational motion of the control arm, the relative velocity of the rattle space is filtered using the acceleration signals. For testing the control performance, the actual damping force has been incorporated via the hardware-in-the-loop simulations. The performances of a passive damper and a semi-active damper are compared. Simulation results are provided.

  • PDF

Combined resonance of axially moving truncated conical shells in hygro-thermal environment

  • Zhong-Shi Ma;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.91 no.3
    • /
    • pp.291-300
    • /
    • 2024
  • This paper predicts the combined resonance behavior of the truncated conical shells (TCSs) under transverse and parametric coupled excitation. The motion governing equation is formulated in the framework of high-order shear deformation theory, von Kármán theory and Hamilton principle. The displacements and boundary conditions are characterized by a set of displacement shape functions with double Fourier series. Subsequently, the method of varying amplitude (MVA) is utilized to derive the approximate analytical solution of system response of TCSs. A comparative analysis is conducted to verify the accuracy of the current computational method. Additionally, the interaction mechanism of combined resonance, parametric resonance and primary resonance is examined. And the effect of damping coefficient, the external excitation, initial phase, axial motion speed, temperature variation, humidity variation, material properties and semi-vortex angle on the vibration mechanism are analyzed.

One-way Coupled Response Analysis between Floating Wind-Wave Hybrid Platform and Wave Energy Converters (부유식 풍력-파력발전 플랫폼과 탑재된 파력발전기와의 단방향 연성 운동 해석)

  • Lee, Hyebin;Bae, Yoon Hyeok;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.84-90
    • /
    • 2016
  • In this study, a six degree-of-freedom motion analysis of a wind-wave hybrid platform equipped with numerous wave energy converters (WECs) was carried out. To examine the effect of the WECs on the platform, an analysis of one-way coupling was carried out, which only considered the power take-off (PTO) damping of the static WECs on the platform. The equation of motion of a floating platform with mooring lines in the time domain was established, and the responses of the one-way coupled platform were then compared with the case of a platform without any coupling effects from the WECs. The hydrodynamic coefficients and wave exciting forces were obtained from the 3D diffraction/radiation pre-processor code WAMIT based on the boundary element method. Then, an analysis of the dynamic responses of the floating platform with or without the WEC effect in the time domain was carried out. All of the dynamics of a floating platform with multiple wind turbines were obtained by coupling FAST and CHARM3D in the time domain, which was further extended to include additional coupled dynamics for multiple turbines. The analysis showed that the PTO damping effect on platform motions was negligible, but coupled effects between multiple WECs and the platform may differentiate the heave, roll, and pitch platform motions from the one without any effects induced by WECs.

Active Control of Clamped Beams Using Acceleration Feedback Controllers (가속도 되먹임 제어기를 이용한 양단지지보의 능동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong;Jeong, Sang-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.101-109
    • /
    • 2010
  • This paper reports active control of clamped beams using acceleration feedback controllers (AF). The equations of motion of clamped beam under force and moment pairs were derived and the equations of AF controllers were formulated. The effect of the parameters - gain and damping ratio - of the AF controllers on the open loop transfer function was investigated mainly in terms of the system stability. Increasing the gain of the AF controller tuned at a mode, the magnitude of the open loop transfer function is increased at all frequencies. The increase of the damping ratio of the AF controller leads to decrease the magnitude of the open loop transfer function and modifies its phase characteristics to be more stable. Three AF controllers connected in parallel were then proposed. Each AF controller is tuned at the $2^{nd}$, $3^{rd}$ and $4^{th}$ modes, respectively. Their parameters were determined to remain the system to be stable based on the results of the parametric study. A significant reduction in vibration at the 3 modes can be obtained.

  • PDF

Dynamic buckling of FGM viscoelastic nano-plates resting on orthotropic elastic medium based on sinusoidal shear deformation theory

  • Arani, A. Ghorbanpour;Cheraghbak, A.;Kolahchi, R.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.489-505
    • /
    • 2016
  • Sinusoidal shear deformation theory (SSDT) is developed here for dynamic buckling of functionally graded (FG) nano-plates. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. In order to present a realistic model, the structural damping of nano-structure is considered using Kelvin-Voigt model. The surrounding elastic medium is modeled with a novel foundation namely as orthotropic visco-Pasternak medium. Size effects are incorporated based on Eringen'n nonlocal theory. Equations of motion are derived from the Hamilton's principle. The differential quadrature method (DQM) in conjunction with Bolotin method is applied for obtaining the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the nonlocal parameter, orthotropic visco-Pasternak foundation, power index of FG plate, structural damping and boundary conditions on the dynamic instability of system. The results are compared with those of first order shear deformation theory and higher-order shear deformation theory. It can be concluded that the proposed theory is accurate and efficient in predicting the dynamic buckling responses of system.