• Title/Summary/Keyword: Motion Coordination

Search Result 90, Processing Time 0.033 seconds

Suggestion of Cutoff Frequency in the Washout Filter for a Wheel type Excavator (주행감각 재현을 위한 휠굴삭기용 Washout 필터 설계 및 한계값 추정)

  • Kim, Kwang-Suk;Yoo, Wan-Suk;Lee, Min-Cheol;Son, Kown;Lee, Jang-Myung;Choi, Dae-Hyoung;Park, Min-Gyu;Park, Hyoung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.19-28
    • /
    • 1999
  • In this study, a real-time simulation system and a washout algorithm for an excavator have been developed for a driving simulator with six degrees of freedom. The excavator model consisting of a boom. bucket, upper frame, lower frame and four wheels, has total 11 degrees of freedom. The suggested washout algorithm consists of high and low pass filters with second order. The high pass filters cut off low frequency of the motion cues limited by platform motion. The cut off frequency for the tilt coordination are suggested for a realistic regeneration of excavator motion.

  • PDF

Motion Planning for a Mobile Manipulator using Directional Manipulability (방향성 매니퓰러빌리티를 이용한 주행 매니퓰레이터의 운동 계획)

  • Shin Dong Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.95-102
    • /
    • 2005
  • The coordination of locomotion and manipulation has been the typical and main issue for a mobile manipulator. This is particularly because the solution for the control parameters is redundant and the accuracies of controlling the each joints are different. This paper presents a motion planning method for which the mobile base locomotion is less precise than the manipulator control. In such a case, it is appropriate to move the mobile base to discrete poses and then to move the manipulator to track a prescribed path of the end effector, while the base is stationary. It uses a variant of the conventional manipulability measure that is developed for the trajectory control of the end effector of the mobile manipulator along an arbitrary path in the three dimensional space. The proposed method was implemented on the simulation and the experiments of a mobile manipulator and showed its effectiveness.

Trajectory Development of Robotic Arc Welding System for Continuous Welding of Corner Area (모서리 부위 연속 용접을 위한 아크 용접 로봇 시스템의 궤적 개발)

  • 장교근;유범상
    • Journal of Welding and Joining
    • /
    • v.14 no.6
    • /
    • pp.68-80
    • /
    • 1996
  • When a workpiece is to be arc welded around the outside corner, continuous welding without welding seam in the neighborhood of comer still remains a very difficult technique. Skilled welders weld comers by delicate“hand-eye coordination”while turning the workpiece manually, However, there is not a very clear solution to this problem in robotized arc welding process. In order to solve this problem, the coordination of a robot and a positioner with one or two axes is necessary. This paper presents a method of continuous welding around the corner of workpiece using the coordinated motion of a robot and a positioner. The positioner is either revolute jointed or prismatic jointed. In this paper, a clothoid curve is chosen for welding trajectory. The clothoid curve is excellent in connecting straight and curved weld-lines with good continuity and accommodates various welding conditions. By using this welding trajectory, the deceleration, which leads to widening of the melt and the heat affected zone, at comer area is reduced with strategic rotation of robot torch in coordination with a positioner providing smooth transition of welding torch orientation. Two types of special clothoid curves are developed for different weld slope conditions. These clothoid curves are applied to the case of linear and rotary Positioners at arc welding robot work-cell.

  • PDF

COORDINATION CHART COLLISION-FREE MOTION OF TWO ROBOT ARMSA

  • Shin, You-Shik;Bien, Zeung-Nam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.915-920
    • /
    • 1987
  • When a task requires two robot arms to move in a cooperative manner sharing a common workspace, potential collision exists between the two robot arm . In this paper, a novel approach for collision-free trajectory planning along paths of two SCARA-type robot arms is presented. Specifically, in order to describe potential collision between the links of two moving robot arms along the designated paths, an explicit form of "Virtual Obstacle" is adopted, according to which links of one robot arm are made to grow while the other robot arm is forced to shrink as a point on the path. Then, a notion of "Coordination Chart" is introduced to visualize the collision-free relationship of two trajectories.of two trajectories.

  • PDF

Reorganization of Motor Network and the Effect of Cross Education Derived From Unilateral Coordination Training (편측 협응훈련에 의한 운동신경망의 재조직 및 교차훈련의 효과 -사례연구-)

  • Park, Ji-Won;Kim, Jong-Man;Seo, Jeong-Hwan;Kim, Yun-Hee
    • Physical Therapy Korea
    • /
    • v.9 no.3
    • /
    • pp.67-76
    • /
    • 2002
  • We report the reorganization of motor network resulted from intensive unilateral coordination training and the effect of cross education on the untrained side in patient with traumatic brain injury using functional magnetic resonance imaging (fMRI). A 22 year-old male patient who had suffered from diffuse axonal injury for 58 months showed coordination deficit in the left hand at initial examination. Intensive motor training including complex finger movements and coordination activities using a metronome was introduced to the patient 4 hours per day for a week. FMRI was performed on a 3T ISOL Forte scanner. All functional images were analyzed using SPM-99 software. Hand function was improved after training not only in the trained left hand, but also in the untrained right hand. There was no activation in the right primary motor area (M1) during left hand movement before training whereas robust activation of left M1 was demonstrated by the right hand movement. Profuse activation of bilateral prefrontal lobes was seen during both hand movements before training. After training of left hand, right M1 became prominently activated during the left hand motion. The activation of bilateral prefrontal lobes disappeared after training not only for the left hand movement but also for the right, which clearly demonstrated the effect of cross education. This case report demonstrated the learning-dependent reorganization of the M1 and the effect of cross education.

  • PDF

The effect of motion according to general coordination manipulation treatment on cervical (경추의 전신조정술 관절치료가 관절가동범위에 미치는 영향)

  • Kim Hyoung-Su;Kim Eun-Young;Koo Bong-Oh;Bae Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.4
    • /
    • pp.90-102
    • /
    • 2003
  • Purpose: The purpose of this study is to search effect that GCM joint treatment gets to range of motion of cervical, lumbar, trunk and anke. And cervical gets in ankle joint. Methods: Estimated body deformity using GCM body type assesment chart then measured range of motion of each region. After control group did as act freely after do experiment pre measurement control group did post measurement. After control group did as act freely after do experiment premeasurement, control group did postmeasurement. Each region was measured by measurer who each subject person differs. Experimental group did GCM joint treatment and all measurements each region by measurer who each subject person differs three times measure postmeasurement after premeasurement. When measure with each measurement, measured after leave and walk time interval for 10 minutes. Result: For the analysis of the result of experiment, the results is change amount comparison increased to keep in mind except cervical flexion and both ankle joint's dorsiflexion after experiment of experimental group. In experimental group, cervical, lumber and ankle joint of range of motion was significantly increased(p<.05).

  • PDF

The Effects of Restricted Trunk Motion on the Performance of Maximum Vertical Jump (몸통 운동의 제약이 최대 수직점프의 수행에 미치는 영향)

  • Kim, Yong-Woon;Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.27-36
    • /
    • 2009
  • The purpose of this study was to identify effects of restricted trunk motion on the performances of the maximum vertical jump. Ten healthy males performed normal countermovement jump(NJ) and control type of countermovement jump(CJ), in which subjects were required to restrict trunk motion as much as possible. The results showed 10% decreases of jumping height in CJ compared with NJ, which is primarily due to vertical velocity at take off. NJ with trunk motion produced significantly higher GRF than RJ, especially at the early part of propulsive phase, which resulted from increased moments on hip joint. And these were considered the main factors of performance enhancement in NJ. There were no significant differences in the mechanical outputs on knee and ankle joint between NJ and RJ. With trunk motion restricted, knee joint alternatively played a main role for propulsion, which is contrary on the normal jump that hip joint was highest contributor. And restricted trunk motion resulted in the changes of coordination pattern, knee-hip extension timing compared with normal proximal-distal sequence. In conclusion these results suggest that trunk motion is effective strategy for increasing performance of vertical jumping.

From Exoscope into the Next Generation

  • Nishiyama, Kenichi
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.3
    • /
    • pp.289-293
    • /
    • 2017
  • An exoscope, high-definition video telescope operating monitor system to perform microsurgery has recently been proposed an alternative to the operating microscope. It enables surgeons to complete the operation assistance by visualizing magnified images on a display. The strong points of exoscope are the wide field of view and deep focus. It minimized the need for repositioning and refocusing during the procedure. On the other hand, limitation of magnifying object was an emphasizing weak point. The procedures are performed under 2D motion images with a visual perception through dynamic cue and stereoscopically viewing corresponding to the motion parallax. Nevertheless, stereopsis is required to improve hand and eye coordination for high precision works. Consequently novel 3D high-definition operating scopes with various mechanical designs have been developed according to recent high-tech innovations in a digital surgical technology. It will set the stage for the next generation in digital image based neurosurgery.

Biomechanical Analysis of Combination of Isotonic in Proprioceptive Neuromuscular Facilitation (고유수용성 신경근 촉진법 중 등장성수축결합의 생역학적 해석)

  • Bae Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.4
    • /
    • pp.260-265
    • /
    • 2002
  • There are many methods for muscle strengthening. Muscle strengthening with eccentric contraction work is the best way by researcher's report. Also, eccentric contraction need proper resistance for muscle strengthening. Combination of isotonic in PNF is a muscle strengthening method with manual resistance. It makes concentric contraction $\rightarrow$ eccentric contraction $\rightarrow$ concentric contraction with continually and without muscle relaxation. Combination isotonic technique use with PNF pattern. Therefore, it will make development and increasing of active control motion, coordination, actual range of motion, strengthen and functional training in eccentric control of movement. Concentric contraction have the 3rd lever system and eccentric contraction have the 2nd lever system with combination of isotonic. Serial concentric contraction $\rightarrow$ eccentric contraction $\rightarrow$ concentric contraction make strong SEC and PEC. It will be increase elasticity of SEC, PEC and contractile components either.

  • PDF

Quantitative Study of Dynamic Modtion Difference Between Normal Subjents and Low-Back Pain Patients (정상인과 요통환자의 동적 움직임의 차이에 관한 정량적 연구)

  • 김정룡
    • Proceedings of the ESK Conference
    • /
    • 1996.04a
    • /
    • pp.301-306
    • /
    • 1996
  • Different patterns of dynamic trunk performance between normal subjects and low-back pain (LBP) patients have been investigated. Ten healthy subjects and ten LBP patients were recruited for this study. An experiment was designed to quantify the dynamic motion of the back and hip during repetitive flexion/extension of the trunk. The angular velocity, angular acceleration and the phase angle difference between the hip and back were recorded as dependent measures via electro- mechanical devices. Results showed the significant differences in the velocity and acceleration of the hip and back and the phase angle between normal subjects and LBP patients. The consistency of kinematic variables during motion cycles was also examined in terms of variance ratio (Hershler and Milner, 1978). Based on the results of the study, these quantifiable variables such as trunk kinematics and hip-spine coordination can be developed as a medical tool to identify LBP patients in addition to current imaging techniques.

  • PDF