• Title/Summary/Keyword: Motion Behavior

Search Result 1,493, Processing Time 0.031 seconds

Behavior of Non-premixed Flame Front in an Acoustically-Driven Dump Combustor (가진된 덤프 연소기 내에서의 비예혼합 화염 거동)

  • Park, Jung-Kyu;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.142-151
    • /
    • 2000
  • Dump combustor is a combustor having a dump plane to make coherent structures. A non-premixed flame dump combustor of simple geometry was constructed. We conducted basic experiments such as frequency response on the combustor to confirm the characteristics of the phenomena as a typical dump combustion and unsteady combustion. Furthermore we visualized the flame front behavior by CH chemiluminescence and high speed motion analysis. In spite of the lack of another data such as velocity, species concentration and temperature, the results showed not only the periodic motion of flame front but the ignition process of vortex ring flame. Also we could check out Rayleigh criterion by combining the visualization data with the pressure data.

  • PDF

Computational Study on Aeroacoustics of an Elastic Cantilevered Trailing-Edge (탄성 날개 끝단의 공력 소음에 관한 전산해석 연구)

  • Hwang Bon Chang;Moon Young June
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.159-168
    • /
    • 2005
  • Noise generated by the blunt trailing edge of lifting surfaces is investigated in this study using fluid structure interaction theory. First, through the eddy modeling, noise generation doe to the flow instability on the rigid trailing edge is surveyed. Then the behavior of elastic cantileverd beam is investigated. Parametric study based on various material properties is employed to analyze the motion of the beam. Moreover, each eigenmode approach of cantilevered beam is used to find when flow induced vibration is resonant. To analyze elastic behavior of cantilever beam efficiently, moving grid generation technique based on non-conservative form of Navier-Stokes equation is used. Equation of the motion associated with the cantilever beam is discretized by the Galerkin procedure with forced vibration. As a consequence, behavior of the elastic cantilevered beam is stable when the first mode natural frequency of the material is relatively higher than that of flow induced pressure fluctuation.

  • PDF

Swarm Group Mobility Model for Ad Hoc Wireless Networks

  • Kim, Dong-Soo S.;Hwang, Seok-K.
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.53-59
    • /
    • 2007
  • This paper proposes a new group mobility model for wireless communication. The mobility model considers the psychological and sociological behavior of each node and the perception of other nodes for describing interactions among a set of nodes. The model assumes no permanent membership of a group, capable of capturing natural behaviors as fork and join. It emulates a cooperative movement pattern observed in mobile ad hoc networks of military operation and campus, in which a set of mobile stations accomplish a cooperative motion affected by the individual behavior as well as a group behavior. The model also employs a physic model to avoid a sudden stopping and a sharping turning.

  • PDF

A Research on Dynamic Behavior of Clamshell Hood to Secure the Safety and Durability Performance

  • Kyoungtaek Kwak;Seunghoon Kang;Jaedong Yoo;Kyungdug Seo;Youngchul Shin;Kyungsup Chun;Jaekyu Lee
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.1
    • /
    • pp.7-15
    • /
    • 2023
  • The purpose of this study is to predict the dynamic behavior of clamshell hood system on the harsh road driving condition, and secure the safety and durability performance of the system. The equation of motion of hood system is derived and the numerical analysis is implemented to obtain the lateral movement of the hood system. Also, the actual Belgian road test results are correlated to the predicted ones, and confirm the reliability of the system. Then, the parameter study is conducted to figure out the sensitive factors to affect the dynamic behavior, and the engineering design guide to make the system robust to confine the minimum friction force generated from hood latch and maximum hood weight is suggested from this research.

Violent Behavior Detection using Motion Analysis in Surveillance Video (감시 영상에서 움직임 정보 분석을 통한 폭력행위 검출)

  • Kang, Joohyung;Kwak, Sooyeong
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.430-439
    • /
    • 2015
  • The demand of violence detection techniques using a video analysis to help prevent crimes is increasing recently. Many researchers have studied vision based behavior recognition but, violent behavior analysis techniques usually focus on violent scenes in television and movie content. Many methods previously published usually used both a color(e.g., skin and blood) and motion information for detecting violent scenes because violences usually involve blood scenes in movies. However, color information (e.g., blood scenes) may not be useful cues for violence detection in surveillance videos, because they are rarely taken in real world situations. In this paper, we propose a method of violent behavior detection in surveillance videos using motion vectors such as flow vector magnitudes and changes in direction except the color information. In order to evaluate the proposed algorithm, we test both USI dataset and various real world surveillance videos from YouTube.

The Prediction of the Dynamic Transmission Error for the Helical Gear System (헬리컬 기어계의 동적 전달오차의 예측)

  • Park, Chan-Il;Cho, Do-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1359-1367
    • /
    • 2004
  • The purpose of this study is to predict the dynamic transmission error of the helical gear system. To do so, the equations of motion in the helical gear system which consists of motor, coupling, gear, torque sensor, and brake are derived. As the input parameters, the mass moment of inertia by a 3D CAD software and the equivalent stiffness of the bearings and shaft are calculated and the coupling stiffness is measured. The static transmission error as an excitation is calculated by in-house program. Dynamic transmission error is predicted by solving the equations of motion. Mode shape, the dynamic mesh force and the bearing force are also calculated. In this analysis, the relationship between the dynamic mesh force and the bearing force and mode shape behavior in gear mesh are checked. As a result, the magnitude of mesh force is highly related with the gear mesh behavior in mode shape. The finite element analysis is conducted to find out the natural frequency of gear system. The natural frequencies by finite element analysis have a good agreement with the results by equation of motion. Finally, dynamic transmission error is measured by the specially designed experiment and the results by equation of motion are validated.

Behavior Analysis of a Seismically Isolated NPP Structure by Varying Seismic Input Generation Method and Strong Ground Motion Duration (입력운동 생성방법과 강진지속시간에 따른 면진원전의 거동 분석)

  • Kim, Hyun-Uk;Joo, Kwang-Ho;Noh, Sang-Hoon;Jung, Chang-Gyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.187-195
    • /
    • 2013
  • In this paper, firstly, acceleration-time histories were generated by varying strong motion duration in the frequency domain for application to a seismically isolated nuclear power structure, so as to examine the effects of strong motion duration on the behavior of the structure. Secondly, real recorded earthquakes were modified to match the target response spectrum based on the revised SRP 3.7.1(2007) and the modified time histories were applied to the analysis of a seismically isolated nuclear power structure. The obtained values of acceleration and displacement responses of the structure were, finally, compared with the values obtained in case of applying acceleration-time histories generated in the frequency domain to the structure.

Simulation analysis on the separation characteristics and motion behavior of particles in a hydrocyclone

  • Xu, Yanxia;Tang, Bo;Song, Xingfu;Sun, Ze;Yu, Jianguo
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2355-2364
    • /
    • 2018
  • We evaluated the effect of particle size and associated dynamics on a hydrocyclone separation process in order to understand the movement of the particle trajectories inside the hydrocyclone via numerical analysis, with particles of acid hydrolysis residues discharged in $TiO_2$ production via the sulfate method as a case study. The values obtained from the numerical simulation were successfully compared with those from experimental tests in the literature, allowing a description of the dynamics of the particles, their acting forces, and their relevant properties together with separation efficiency. The results showed that particle motion is jointly controlled by the drag force, the pressure gradient force and the centrifugal force. With increasing particle size, the influence of the drag force is weakened, whereas that of the centrifugal force and pressure gradient is strengthened. Factors including particle density, slurry viscosity, and inlet slurry flow rate also contribute to a clear and useful understanding of particle motion behavior in the hydrocyclone as a method for improving the separation efficiency.

A Study on compressive behavior of laminated plates with initial delamination (박리가 발생된 적층평판의 압축 거동에 관한 연구)

  • Lee, Nam-Ju;Jo, Yong-Oug
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.167-174
    • /
    • 2016
  • Recently laminated plates like composite materials has been used in a various field to grow the specific strength of the composition. However, delamination area caused by barely visible impact damage has potential risk that it can raise buckling of the delaminated plate. Because it can interrupt compressive behavior of laminated plates and reduce their strength, the whole structure can't be constituted by these materials. Many studies assume that behavior of the delaminated plate which is in lamanated plates equals theoretical buckling but their actual motion doesn't coincide because of initial imperfections of materials like deflection, residual stress, eccentricity and so on. In this paper, we change laminated plates with initial delamination into a beam of rectangular cross section with the initial crack and analyze compressive behavior according to initial imperfections through finite element method(FEM). Consequently analysis results show that behavior of laminated plates involving delamination differs from ideal buckling of the delaminated plate in actual conditions and we can predict its motion through imperfections relationship.

  • PDF

Seismic Behavior of Bridges Considering Ground Motion Spatial Variation (공간적으로 변화하는 입력지진으로 인한 교량의 지진거동특성)

  • Bae, Byung Ho;Choi, Kwang Kyu;Kang, Seung Woo;Song, Si Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.759-768
    • /
    • 2015
  • The ground motions of large dimensional structures such as long span bridges at different stations during an earthquake, are inevitably different, which is known as the ground motion spatial variation effect. There are many causes that may result in the spatial variability in seismic ground motion, e.g., the wave passage effect due to the different arrival times of waves at different locations; the loss of coherency due to seismic waves scattering in the heterogeneous medium of the ground; the site amplification effect owing to different local soil properties. In previous researches, the site amplification effects have not been considered or considered by a single-layered soil model only. In this study, however, the ground motion amplification and filtering effects are evaluated by multi-layered soil model. Spatially varying ground motion at the sites with different number of layers, depths, and soil characteristics are generated and the variation characteristics of ground motion time histories according to the correlation of coherency loss function and soil conditions are evaluated. For the bridge system composed of two unit bridges, seismic behavior characteristics are analyzed using the generated seismic waves as input ground motion. Especially, relative displacement due to coherency loss and site effect which can cause the unseating and pounding between girders are evaluated. As a result, considering the soil conditions of each site are always important and should not be neglected for an accurate structural response analysis.