• Title/Summary/Keyword: Mosul

Search Result 27, Processing Time 0.022 seconds

The role of internal architecture in producing high-strength 3D printed cobalt-chromium objects

  • Abdullah Jasim Mohammed;Ahmed Asim Al-Ali
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.2
    • /
    • pp.91-104
    • /
    • 2024
  • PURPOSE. The objectives of the current study were to estimate the influence of self-reinforced hollow structures with a graded density on the dimensional accuracy, weight, and mechanical properties of Co-Cr objects printed with the direct metal laser sintering (DMLS) technique. MATERIALS AND METHODS. Sixty-five dog-bone samples were manufactured to evaluate the dimensional accuracy of printing, weight, and tensile properties of DMLS printed Co-Cr. They were divided into Group 1 (control) (n = 5), Group 2, 3, and 4 with incorporated hollow structures based on (spherical, elliptical, and diamond) shapes; they were subdivided into subgroups (n = 5) according to the volumetric reduction (10%, 15%, 20% and 25%). Radiographic imaging and microscopic analysis of the fractographs were conducted to validate the created geometries; the dimensional accuracy, weight, yield tensile strength, and modulus of elasticity were calculated. The data were estimated by one-way ANOVA and Duncan's tests at P < .05. RESULTS. The accuracy test showed an insignificant difference in the x, y, z directions in all printed groups. The weight was significantly reduced proportionally to the reduced volume fraction. The yield strength and elastic modulus of the control group and Group 2 at 10% volume reduction were comparable and significantly higher than the other subgroups. CONCLUSION. The printing accuracy was not affected by the presence or type of the hollow geometry. The weight of Group 2 at 10% reduction was significantly lower than that of the control group. The yield strength and elastic modulus of the Group 2 at a 10% reduction showed means equivalent to the compact objects and were significantly higher than other subgroups.

Optimization of a sandwich beam design: analytical and numerical solutions

  • Awad, Ziad K.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.93-102
    • /
    • 2013
  • An optimization work was developed in this work to provide design information for sandwich beam in civil engineering applications. This research is motivated by the wide-range applications of sandwich structures such as; slab, beam, girder, and railway sleeper. The design of a sandwich beam was conducted by using analytical and numerical optimization. Both analytical and numerical procedures consider the optimum design with structure mass objective minimization. Allowable deflection was considered as design constraints. It was found that the optimized core to the skins mass ratio is affected by the skin to core density and elastic modulus ratios. Finally, the optimum core to skin mass ratio cannot be constant for different skin and core materials.

Reliability-based modeling of punching shear capacity of FRP-reinforced two-way slabs

  • Kurtoglu, Ahmet Emin;Cevik, Abdulkadir;Albegmprli, Hasan M.;Gulsan, Mehmet Eren;Bilgehan, Mahmut
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.87-106
    • /
    • 2016
  • This paper deals with the reliability analysis of design formulations derived for predicting the punching shear capacity of FRP-reinforced two-way slabs. Firstly, a new design code formulation was derived by means of gene expression programming. This formulation differs from the existing ones as the slab length (L) was introduced in the equation. Next, the proposed formulation was tested for its generalization capability by a parametric study. Then, the stochastic analyses of derived and existing formulations were performed by Monte Carlo simulation. Finally, the reliability analyses of these equations were carried out based on the results of stochastic analysis and the ultimate state function of ASCE-7 and ACI-318 (2011). The results indicate that the prediction performance of new formulation is significantly higher as compared to available design equations and its reliability index is within acceptable limits.

ON THE STRUCTURE OF A k-ANNIHILATING IDEAL HYPERGRAPH OF COMMUTATIVE RINGS

  • Shaymaa S. Essa;Husam Q. Mohammad
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.55-67
    • /
    • 2023
  • In this paper we obtain a new structure of a k-annihilating ideal hypergraph of a reduced ring R, by determine the order and size of a hypergraph 𝒜𝒢k(R). Also we describe and count the degree of every nontrivial ideal of a ring R containing in vertex set 𝒜(R, k) of a hypergraph 𝒜𝒢k(R). Furthermore, we prove the diameter of 𝒜𝒢k(R) must be less than or equal to 2. Finally, we determine the minimal dominating set of a k-annihilating ideal hypergraph of a ring R.

Numerical analysis for the punching shear resistance of SFRC flat slabs

  • Baraa J.M. AL-Eliwi;Mohammed S. Al Jawahery
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.425-438
    • /
    • 2023
  • In this article, the performance of steel fiber-reinforced concrete (SFRC) flat slabs was investigated numerically. The influence of flexural steel reinforcement, steel fiber content, concrete compressive strength, and slab thickness were discussed. The numerical model was developed using ATENA-Gid, user-friendly software for non-linear structural analysis for the evaluation and design of reinforced concrete elements. The numerical model was calibrated based on eight experimental tests selected from the literature to validate the actual behavior of steel fiber in the numerical analysis. Then, a parametric study of 144 specimens was generated and discussed the impact of various parameters on the punching shear strength, and statistical analysis was carried out. The results showed that slab thickness, steel fiber content, and concrete compressive strength positively affect the punching shear capacity. The fib Model Code 2010 for specimens without steel fibers and the model of Muttoni and Ruiz for SFRC specimens presented a good agreement with the results of this study.

UTILIZING COUPLING STRATEGY TO GENERATE A NEW SIMPLE 7D HYPERCHAOTIC SYSTEM AND ITS CIRCUIT APPLICATION

  • Saad Fawzi Al-Azzawi
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.547-562
    • /
    • 2024
  • By utilizing coupling the strategy in the 5D Sprott B system, a new no equilibrium 7D hyperchaotic system is introduced. Despite the proposed system being simple with twelve-term, including solely two cross product nonlinearities, it displays extremely rich dynamical features such as hidden attractors and the dissipative and conservative nature. Besides, this system has largest Kaplan-Yorke dimension compared with to the work available in the literature. The dynamical properties are fully investigated via Matlab 2021 software from several aspects of phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, offset boosting and so on. Moreover, the corresponding circuit is done through Multisim 14.2 software and preform to verify the new 7D system. The numerical simulations wit carryout via both software are agreement which indicates the efficiency of the proposed system.

Finite element and design code assessment of reinforced concrete haunched beams

  • Gulsan, Mehmet Eren;Albegmprli, Hasan M.;Cevik, Abdulkadir
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.423-438
    • /
    • 2018
  • This pioneer study focuses on finite element modeling and numerical modeling of three types of Reinforced Concrete Haunched Beams (RCHBs). Firstly, twenty RCHBs, consisting of three types, and four prismatic beams which had been tested experimentally were modeled via a nonlinear finite element method (NFEM) based software named as, ATENA. The modeling results were compared with experimental results including load capacity, deflection, crack pattern and mode of failure. The comparison showed a good agreement between the results and thus the model used can be effectively used for further studies of RCHB with high accuracy. Afterwards, new mechanism modes and design code equations were proposed to improve the shear design equation of ACI-318 and to predict the critical effective depth. These equations are the first comprehensive formulas in the literature involving all types of RCHBs. The statistical analysis showed the superiority of the proposed equation to their predecessors where the correlation coefficient, $R^2$ was found to be 0.89 for the proposed equation. Moreover, the new equation was validated using parametric and reliability analyses. The parametric analysis of both experimental and predicted results shows that the inclination angle and the compressive strength were the most influential parameters on the shear strength. The reliability analysis indicates that the accuracy of the new formulation is significantly higher as compared to available design equations and its reliability index is within acceptable limits.

Optimum cost design of frames using genetic algorithms

  • Chen, Chulin;Yousif, Salim Taib;Najem, Rabi' Muyad;Abavisani, Ali;Pham, Binh Thai;Wakil, Karzan;Mohamad, Edy Tonnizam;Khorami, Majid
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.293-304
    • /
    • 2019
  • The optimum cost of a reinforced concrete plane and space frames have been found by using the Genetic Algorithm (GA) method. The design procedure is subjected to many constraints controlling the designed sections (beams and columns) based on the standard specifications of the American Concrete Institute ACI Code 2011. The design variables have contained the dimensions of designed sections, reinforced steel and topology through the section. It is obtained from a predetermined database containing all the single reinforced design sections for beam and columns subjected to axial load, uniaxial or biaxial moments. The designed optimum beam sections by using GAs have been unified through MATLAB to satisfy axial, flexural, shear and torsion requirements based on the designed code. The frames' functional cost has contained the cost of concrete and reinforcement of steel in addition to the cost of the frames' formwork. The results have found that limiting the dimensions of the frame's beams with the frame's columns have increased the optimum cost of the structure by 2%, declining the re-analysis of the optimum designed structures through GA.

Dynamic response of reinforced concrete members incorporating steel fibers with different aspect ratios

  • Haido, James H.;Abdul-Razzak, Ayad A.;Al-Tayeb, Mustafa M.;Bakar, B.H. Abu;Yousif, Salim T.;Tayeh, Bassam A.
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.89-98
    • /
    • 2021
  • Investigations on the dynamic behavior of concrete members, incorporating steel fibers with different aspect ratios, are limited so far and do not covered comprehensively in prior studies. Present endeavor is devoted to examine the dynamic response of the steel fibrous concrete beams and slabs under the influence of impact loading. These members were reinforced with steel fibers in different length of 25 mm and 50 mm. Four concrete mixes were designed and used based on the proportion of long and short fibers. Twenty-four slabs and beams were fabricated with respect to the concrete mix and these specimens were tested in impact load experiment. Testing observations revealed that the maximum dynamic deflection or ductility of the member can be achieved with increasing the fiber length. Structural behavior of the tested structures was predicted using nonlinear finite element analysis with specific material constitutive relationships. Eight nodes plate elements have been considered in the present dynamic analysis. Dynamic fracture energy of the members was calculated and agreement ratio, of more than 70%, was noticed between the experimental and analysis outcomes.

Efficient power allocation algorithm in downlink cognitive radio networks

  • Abdulghafoor, Omar;Shaat, Musbah;Shayea, Ibraheem;Mahmood, Farhad E.;Nordin, Rosdiadee;Lwas, Ali Khadim
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.400-412
    • /
    • 2022
  • In cognitive radio networks (CRNs), the computational complexity of resource allocation algorithms is a significant problem that must be addressed. However, the high computational complexity of the optimal solution for tackling resource allocation in CRNs makes it inappropriate for use in practical applications. Therefore, this study proposes a power-based pricing algorithm (PPA) primarily to reduce the computational complexity in downlink CRN scenarios while restricting the interference to primary users to permissible levels. A two-stage approach reduces the computational complexity of the proposed mathematical model. Stage 1 assigns subcarriers to the CRN's users, while the utility function in Stage 2 incorporates a pricing method to provide a power algorithm with enhanced reliability. The PPA's performance is simulated and tested for orthogonal frequency-division multiplexing-based CRNs. The results confirm that the proposed algorithm's performance is close to that of the optimal algorithm, albeit with lower computational complexity of O(M log(M)).