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UTILIZING COUPLING STRATEGY TO GENERATE A NEW

SIMPLE 7D HYPERCHAOTIC SYSTEM AND ITS CIRCUIT

APPLICATION

Saad Fawzi Al-Azzawi

Abstract. By utilizing coupling the strategy in the 5D Sprott B system,
a new no equilibrium 7D hyperchaotic system is introduced. Despite

the proposed system being simple with twelve-term, including solely two

cross product nonlinearities, it displays extremely rich dynamical features
such as hidden attractors and the dissipative and conservative nature.

Besides, this system has largest Kaplan-Yorke dimension compared with
to the work available in the literature. The dynamical properties are

fully investigated via Matlab 2021 software from several aspects of phase

portraits, Lyapunov exponents, Kaplan-Yorke dimension, offset boosting
and so on. Moreover, the corresponding circuit is done through Multisim

14.2 software and preform to verify the new 7D system. The numerical

simulations wit carryout via both software are agreement which indicates
the efficiency of the proposed system.

1. Introduction

The n-D dynamical systems are divided into low-dimension and high-dim-
ension under n = 3 and n ≥ 4, respectively. Currently, generating high-
dimensional systems that possess multiple positive Lyapunov exponentials with
the fewest number of terms and largest Kaplan-Yorke dimension poses a chal-
lenging task due to several factors. The first challenge is to ensure that these
systems adhere to the simplicity criteria established by researcher Sprott [46].
The second obstacle involves systems containing numerous terms, which tend
to be challenging and more complex to implement in potential applications
compared to systems with only a few terms, such as chaos control, chaos syn-
chronization [15, 18, 19, 23, 26, 47], encryption [5, 13], and optimization [37].
Especially the subject of electronic circuits, which witnessed increasing inter-
est from many researchers due to the importance of testing the efficiency and
effectiveness of the proposed systems [20,25,27,35,36,39,48–50,52,53].
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The reported 7-D systems with different attractors, total number of terms,
and largest Kaplan-Yorke dimension are categorized in Table 1. The reported
various dimensional 5D/6D systems with a total number of terms are listed in
Table 2. Mostly 7-D systems are more than 19-term with a dissipative nature
[7, 11, 16, 22, 28, 30, 62, 63, 65]. Only very few 7-D systems are introduced with
the fewest possible number of terms with a conservative nature. It is clear
via Table 1, that 7-D conservative systems with the least number of terms
with higher Kaplan-Yorke dimension are not available in the literature. In
addition, it was noticed from Table 2 show that most dynamical systems for
5D [1,42,44,51,54,58,61,64] and 6D [3,4,6,8–11,21,38,59,60] were composed
of equal or more than 12-term with dissipative nature and not find any simple
conservative 7D hyperchaotic system consist of 12-term solely. This discussion
on the literature motivated us to explore a new seven dimension hyperchaotic
system with different features. The features of the proposed system are:

• This system having four positive Lyapunov exponents so it classify as
hyperchaotic system,

• It is consider as a simple system according to Sprott criterion due to it
composed of merely 12-term,

• It has the largest Kaplan-Yorke dimension compared with other available
traditional systems. Therefore, it becomes more complexity,

• The new system has dissipative and conservative nature,
• Electronic circuit for this system is implementation and both phase por-

traits are agreement through software: Matlab 2021 and Multisim 14.2 which
indicated the efficiency of the proposed system.

Table 1. Reported 7D systems with total number of terms
and largest Kaplan-Yorke dimension.

Reference Attractors No. of positive LEs Total of terms Nature of system Dky

2020 [11] ... n− 2 21 Dissipative 6.1281
2012 [30] Self-excited n− 4 19 Dissipative 5.0828
2014 [28] ... n− 5 21 Dissipative 2.0599
2018 [16] ... n− 2 50 Dissipative 6.7318
2018 [62] Self-excited n− 2 18 Dissipative 6.1486
2019 [63] Self-excited n− 5 18 Dissipative 5.2777
2021 [65] ... n− 4 23 Dissipative 4.0322
2021 [7] Self-excited n− 3 23 Dissipative 5.0638
2023 [22] ... n− 4 19 Dissipative 5.7791
This work Hidden n− 3 12 Dissipative/ Conservative 6.8744/ 7.0000

2. A new 7D hyperchaotic Sprott B system

Many works dealt with Sprott systems to generate new higher dimensional
systems due to their simplicity [17, 24, 31, 56]. In 2016, Ojoniyi and Njah [34]
generated 5D system from the well-known 3D Sprott B system by utilizing a
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Table 2. Reported various dimensional 5D/6D systems with
total number of terms.

Dimension system Reference Total of terms No. of Nonlinear Nature of system

5D 2014 [54] 12 3 Dissipative
5D 2013 [58] 12 3 Dissipative
5D 2017 [64] 15 4 Dissipative
5D 2018 [42] 13 3 Dissipative
5D 2019 [51] 13 4 Dissipative
5D 2019 [61] 12 2 Dissipative
5D 2020 [1] 13 6 Dissipative
5D 2023 [44] 13 5 Dissipative

6D 2020 [11] 17 2 Dissipative
6D 2015 [59] 14 3 Dissipative
6D 2020 [38] 15 2 Dissipative
6D 2020 [60] 14 3 Dissipative
6D 2021 [3] 17 2 Dissipative
6D 2022 [10] 13 3 Dissipative
6D 2022 [8] 12 4 Dissipative
6D 2022 [6] 17 3 Dissipative
6D 2023 [9] 12 4 Dissipative
6D 2023 [4] 17 3 Dissipative
6D 2024 [21] 12 4 Dissipative

7D This work 12 2 Dissipative/ Conservative

linear state feedback control strategy which expressed as

(1)



dx1

dt = x2x3 − x5,
dx2

dt = x1 − x2 − x4,
dx3

dt = 1− x1x2,
dx4

dt = ax1 + x2,
dx5

dt = x1,

xi, i = 1, 2, . . . , 5 are the five independent state variables, a is the real constant
control parameter. This system is composed of ten terms, including two cross
product nonlinearities with one constant, and exhibits hyperchaotic behavior at
a = 99.8, and the corresponding Lyapunov exponents are LE1 = 0.7810, LE2 =
0.0232, LE3 = −0.0006 ≈ 0, LE4 = −0.0482, LE5 = −1.7558 [34]. Based on
the 5D Sprott B system and coupling strategy, by adding a 2D system into the
5D system, a new 7D hyperchaotic system has been modeled as

(2)



dx1

dt = x2x3 − x5,
dx2

dt = x1 − x2 − x4,
dx3

dt = 1− x1x2,
dx4

dt = ax1 + x2,
dx5

dt = x1,
dx6

dt = bx6,
dx7

dt = cx7,
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xi, i = 1, 2, . . . , 7 are state variables, b and c are both coupling parameters and
b, c ̸= 0, whereas a is the control parameter. Obviously, this system is simple,
with twelve terms only. In general, the system can be written in vector form
as

(3) Ẋ = f(xi) = [x2x3 − x5, x1 − x2 − x4, 1− x1x2, ax1 + x2, x1, bx6, cx7]
T .

3. Dynamical analysis

The dynamic characteristics that hold significant importance for the pro-
posed system will be seek herein.

Theorem 3.1. The proposed system without equilibrium points.

Proof. Set all dxi

dt = 0 in system (2) and solving the system equations

(4)



x2x3 − x5 = 0,
x1 − x2 − x4 = 0,

1− x1x2 = 0,
ax1 + x2 = 0,

x1 = 0,
bx6 = 0,
cx7 = 0.

The fifth equation of system (4) shows that x1 = 0, which contradicts the
third equation where 1 is equal to 0. As a result, the proposed system does not
have any equilibrium points and falls under the category of hidden attractors.

□

3.1. Nature of the proposed system

The divergence or Trace of the matrix of system (3) is computed as

(5) Tr(f(xi)) = ∇ · f(xi) = divf(xi) =

7∑
i=1

∂ẋi

∂xi
= −1 + b+ c.

From Eq. (5) and relying on both coupling parameters, it is feasible to
determine whether the nature of the proposed system is either dissipative or
conservative through the relationship (6)

(6) Nature =

 dissipative; if c < 1− b,
conservative; if c = 1− b,
unbonded; if c > 1− b.

3.2. Phase portraits and hyperchaotic behavior

Analytical, the new system can exhibit two distinct natures, namely dis-
sipative and conservative, under the parameters (a, b, c) = (0.1, 0.9, 0.01) and
(a, b, c) = (0.1, 0.9, 0.1), respectively upon the divergence of the system as de-
fined in Eqs. (7) and (8), respectively. The precision and consistency of the an-
alytical findings were verified through numerical simulation employing the Wolf
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algorithm [34]. Figure 1 portrays the hyperchaotic attractors of the proposed
system, employing initial conditions xi(0) = (0.1, 0.1, 0.3, 0.3, 0.2, 0.1, 0.1). Eqs.
(7) and (8) provides the Lyapunov exponents, their sum, and the (Dky) cor-
responding to each nature. The Lyapunov exponents are also illustrated in
Figure 2.

(7)



LE1 = 0.9000
LE2 = 0.0840
LE3 = 0.0100
LE4 = 0.0072
LE5 = 0.0000
LE6 = −0.3745
LE7 = −0.7167∑7
i=1 LEi = −0.09︸ ︷︷ ︸

Dissipative


, DKY = 6.8744,

(8)



LE1 = 0.9000
LE2 = 0.1000
LE3 = 0.0840
LE4 = 0.0072
LE5 = 0.0000
LE6 = −0.3745
LE7 = −0.7167∑7
i=1 LEi = −0.00︸ ︷︷ ︸

Conservative


, DKY = 7.000.

System (3) has hyperchaotic attractors with four positive Lyapunov expo-
nents (+veLEs), i.e., realized (n − 3) + veLEs and the largest Lyapunov ex-
ponent (new 7D system) = 0.9000 is greater than the original system (LE1)
(original 5D Sprott B system) = 0.7810, which refers to the new system is
highly complex compared to the system (1).

Remark 1.
• Lyapunov exponents are ordered from largest to smallest [57],
• The largest (first) Lyapunov exponent must exceed the limit of 0.001, i.e.,

LE1 > 0.001 [32],
• Zero Lyapunov exponent is necessary for finding exponent [45],
• If the sign of the sum Lyapunov exponents is negative (equal to zero), then

the nature of the system is dissipative (conservative),
• If the sign of the sum Lyapunov exponents is positive, then the system is

unbonded,
• The sum of Lyapunov exponents should be almost equal to divergence,

i.e.,
∑7

i=1 LEi = divf(xi) [43],
• A system with a higher Kaplan-Yorke dimension indicates complexity,
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• Kaplan-Yorke dimension for the conservative (dissipative) system must be
an integer (non-integer),

• In most applications, a system that has multiple positive Lyapunov expo-
nents is considered more significant.

Remark 2. By implementing a coupling control strategy and exploring the
influence of parameters on the proposed system, we have obtained the following
findings:

• The first and third Lyapunov exponents in Eq. (8) are the same values of
the coupling parameters b = 0.9, c = 0.01, respectively, i.e., LE1 = b, LE3 = c.

• Due to the above finding, if select b, c are negative signs, then LE1= −b,
LE3= −c. Thus, the system has hyperchaotic attractors with two positive
Lyapunov exponents and satisfied (n− 5) + veLE.

• If the 2D system is added to the 5D system as ẋ6 = −bx6, ẋ7 = −cx7,
then the negative sign has no effect on the exponents.
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Figure 1. Phase portraits of a system (2) in the planes: (a)
x1 − x2, (b) x1 − x3, (c) x2 − x3.
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Figure 2. LEs of the proposed system.

4. Offset boosting

Offset boosting control has several applications in hyperchaotic systems [29,
33]; it is very useful to convert a unipolar signals into a bipolar signals and
vice versa. Clearly, the state variable x3 solely appears in the first equation
of the proposed system, so it is simplicity to control and variable x3 can be
offset boosting by introducing feedback d and the corresponding offset boosting
system as:

(9)



dx1

dt = x2(x3 + d)− x5,
dx2

dt = x1 − x2 − x4,
dx3

dt = 1− x1x2,
dx4

dt = ax1 + x2,
dx5

dt = x1,
dx6

dt = bx6,
dx7

dt = cx7,

in which d offset boosting controller. Under the parameters (a, b, c) = (0.1, 0.9,
0.01) and initial conditions (0.1, 0.1, 0.3, 0.3, 0.2, 0.1, 0.1), the phase portraits of
the system (2) in x1 − x3 plane, x2 − x3 plane with different offset boosting
control d, which are depicted in Figure 3(a), (b), respectively.

5. Circuit implementation

To investigate the efficiency and effectiveness of the proposed system and to
obtain their attractors by another approach, a circuit design is utilized through
Multisim 14.2 software. This circuit design is comprised of fundamental com-
ponents such as amplifiers (TL082CD), supply voltage (±16V ) capacitors, re-
sistors, and multipliers (AD633), which are illustrated in Figure 4. Typically,
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Figure 3. Phase portraits of the system (2) with various off-
set boosting control d and different planes: (a) x1 − x3, (b)
x2 − x3 for d = 7 (red), d = 0 (green) and d = −7 (blue).

two factors are used: amplitude scale factor and time scale factor. Some studies
incorporate both of these factors [2,12,29,66], while others find the time scale
factor alone sufficient [14, 55, 67]. Meanwhile, certain works do not consider
either of these factors [40,41].

Theorem 5.1. An electronic circuit for the proposed system is implemented
under the typical parameters as a = 0.1, b = 0.9 and c = 0.01, and the factor
of time scale transform τ = τ0t, (τ0 = 1000).

Proof. The new system can be rewritten as

(10)



dx1

dt = −1000(−x2)x3 − 1000x5,
dx2

dt = −1000(−x1)− 1000x2 − 1000x4,
dx3

dt = −1000(−1)− 1000x1x2,
dx4

dt = −100(−x1)− 1000(−x2),
dx5

dt = −1000(−x1),
dx6

dt = −900(−x6),
dx7

dt = −10(−x7).

Based on Kirchhoffs law, the circuit equations can be formulated for system
(10) as

(11)



dx1

dt = − 1
R1C1

(−x2)x3 − 1
R2C1

x5,
dx2

dt = − 1
R3C2

(−x1)− 1
R4C2

x2 − 1
R5C2

x4,
dx3

dt − 1
R6C3

(−V1)− 1
10R7C3

x1x2,
dx4

dt = − 1
R8C4

(−x1)− 1
R9C4

(−x2),
dx5

dt = − 1
R10C5

(−x1),
dx6

dt = 1
R11C6

(−x6),
dx7

dt = − 1
R12C7

(−x7).
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In which each capacitor ∀Ci = 10nF , i = 1, 2, . . . , 7. By comparing the coef-
ficients in Eqs. (10) and (11), the values of the resistors (Ri) can be determined
as

(12)



1
R1C1

= 1000 =⇒ R1 = 100kΩ,
1

R2C1
= 1000 =⇒ R2 = 100kΩ,

1
R3C2

= 1000 =⇒ R3 = 100kΩ,
1

R4C2
= 1000 =⇒ R4 = 100kΩ,

1
R5C2

= 1000 =⇒ R5 = 100kΩ,
1

R6C3
= 1000 =⇒ R6 = 100kΩ,

1
10R7C3

= 1000 =⇒ R7 = 10kΩ,
1

R8C4
= 100 =⇒ R8 = 1MΩ,

1
R9C4

= 1000 =⇒ R9 = 100kΩ,
1

R10C5
= 1000 =⇒ R10 = 100kΩ,

1
R11C6

= 900 =⇒ R11 = 111.111KΩ,
1

R12C7
= 10 =⇒ R12 = 10MΩ.

Figure 5 shows the simulation results of Multisim 14.2 of an electronic circuit,
which presents hyperchaotic attractors of the system (2) in different planes.
These results are identical to the results of Matlab simulation as depicted in
Figure 1, which indicated the circuit feasibility of the proposed system, whereas
the simulation result is captured via digital oscilloscope (Tektronix) in plane
x2 − x3 supports the validity and accuracy of results. □

6. Time series

In the context of dynamical systems, time series data capture the behavior
or evolution of a system over time. Time series data in a chaotic/hyperchaotic
systems are mostly employed to examine and study the behavior of dynamic
systems. By investigating the points of sequential data, scientists can distin-
guish irregularities, periodicities, and trends. This diagnosis helps in identifying
the dynamical system, forecasting future states, and making suitable decisions.
Many observations can be listed from several sources, such as simulations, real-
world phenomena, or physical experiments. In addition, the analysis of time
series can be employed to examine the state variables for the new model xi,
i = 1, 2, . . . , 7 with respect to time as in Figure 7.

7. Discussion

Through the comparison made between the original model (5D Sprott B
system), and the new 7D system, and highlight the various characteristics,
including the number of terms, Trace of the matrix, nature of the system,
largest Lyapunov exponent (first exponent) and number of +veLEs which is
listed in Table 3.
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Figure 4. Electronic circuit of the new system using Multisim
14.2 software.

Table 3. A comparison between the original 5D Sprott B
system and the proposed 7D system.

The details 5D Sprott B system (Original system) New 7D system(Proposed system)

No. of terms 10-term 12-term
∇.f(xi) -1 −1 + b+ c

Nature of system Dissipative Dissipative/ Conservative
LE1 0.7810 0.9000

No. of positive LEs 2 4

8. Conclusions

A new 7D hyperchaotic system without equilibrium is introduced by apply-
ing a coupling strategy to the 5D Sprott B system. Despite its simplicity, with
twelve terms including two cross product nonlinearities, the system exhibits a
wide range of dynamic features, such as hidden attractors and a combination of
dissipative and conservative behaviors. Furthermore, compared to existing lit-
erature, this system possesses the largest Kaplan-Yorke dimension. Extensive
investigations of the system’s dynamic properties are conducted using Matlab
2021 software, including phase portraits, LEi, Dky, and offset boosting. To
validate the proposed 7D system, an electronic circuit is designed using Multi-
sim 14.2 software and performs as expected. The numerical simulations carried
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Figure 5. Electronic circuit of the new system uses Multisim
14.2 software.

Figure 6. Simulation results were captured utilizing NI Mul-
tisim 14.2 software via digital oscilloscope (Tektronix) in plane
x2 − x3.

out using both software platforms agree, demonstrating the feasibility of the
new system.
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