• Title/Summary/Keyword: Mortar beam

Search Result 69, Processing Time 0.027 seconds

A Study on Improvement of Seismic Performance of High Strength Reinforced Concrete Interior Beam-Column Joints using High Ductile Fiber-Reinforced Mortar (고인성섬유 복합모르타르를 활용한 고강도 철근콘크리트 내부 보-기둥 접합부의 내진성능 개선 연구)

  • Ha, Gee-Joo;Hong, Kun-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.753-760
    • /
    • 2012
  • In this study, experimental research was carried out to evaluate and improve the constructability and seismic performance of high strength R/C interior beam-column joints regions, with or without the shear reinforcement, using high ductile fiber-reinforced mortar. Six specimens of retrofitted the beam-column joint regions using high ductile fiber-reinforced mortar are constructed and tested for their retrofit performances. Specimens designed by retrofitting the interior beam-column joint regions (IJNS series) of existing reinforced concrete building showed a stable mode of failure and an increase in load-carrying capacity due to the enhancement of crack dispersion by fiber bridging from using new high ductile materials for retrofitting. Specimens of IJNS series, designed by the retrofitting of high ductile fiber-reinforced mortar in beam-column joint regions increased its maximum load carrying capacity by 96~102.8% and its energy dissipation capacity by 0.99~1.11 folds when compared to standard specimen of SIJC with a displacement ductility of 5.

A Study on Improvement of Seismic Performance of High Strength Reinforced Concrete Interior Beam-Column Joints Using High Ductile Fiber-Reinforced Mortar and Advanced Reinforcing Detailings (고인성섬유 복합 모르타르 및 고성능 배근상세를 활용한 고강도 철근콘크리트 내부 보-기둥 접합부의 내진성능 개선 연구)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Hong, Kun-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.233-240
    • /
    • 2013
  • In this study, experimental research was carried out to evaluate and improve the seismic performance of high strength R/C interior beam-column joints regions using advanced reinforcing detailings and high ductile fiber-reinforced mortar. Five specimens of retrofitted the beam-column joint regions using advanced reinforcing detailings and high ductile fiber-reinforced mortar were constructed and tested for their retrofitring performances. Specimens designed by retrofitting the interior beam-column joint regions (IJIR series) of existing reinforced concrete building showed a stable mode of failure and an increase in load-carrying capacity. Specimens of IJIR series, designed by the retrofitting of advanced reinforcing detailings and high ductile fiber-reinforced mortar in reinforecd beam-column joint regions increased its maximum load carrying capacity by 114.2~123.5% and its energy dissipation capacity by 1.55~1.85 times in comparison with the standard specimen of SIJC with a displacement ductility of 5.

An Experimental Study on The Fire Resistance Performance of Steel Encased Reinforcement Concrete and Steel Framed Mortar Beam with Loading Condition (철골 철근콘크리트 보 및 철골철망 모르타르조 보의 전열특성 및 화재거동에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Yeo, In-Hwan;Kwon, Ki-Hyuck;Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.80-88
    • /
    • 2012
  • This study evaluates the fire resisting capacity of the beam of the legal fire resistance construction, which establishes the Article 3 of the Regulations on Escape and Fire Resistance of Buildings. There are a total of five structures that we consider as legal fire resistance constructions, however, this study has a primary target of the reinforced concrete beam, and tests the fire-resistant performance depend on the covering depth of reinforce concrete. The results showed that it meets the three hours, the maximum statutory fire resistance time, if it was a load ratio of 0.5 and covering depth of 40 cm. Steel framed mortar beam is legal fire resistance structure that it was possessed three hours fire resistance performance, if it was a load ratio of 0.4 and covering depth of 60 mm.

An Experimental Study on Bond Strength Progress of Fold Mortar Permanent Form of Manufacturing at Field (현장 가공이 가능한 모르터 영구거푸집의 부착강도 증진을 위한 실험적 연구)

  • 김우재;김성식;임남기;김영희;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.853-858
    • /
    • 2000
  • According to the results of this research, Production of Fold Mortar Permanent - Form was found to be possible by Mortar. Th FP-Form (Fold Permanent-Form) mortar had compress strength 580kgf/$\textrm{cm}^2$. FP-Form model was made by the result of the first research. There was no minute-crack on beam form and the outer surface of form was very smooth, and those qualities it were made possible hand-mad by experiment. This study is about bond strength progress of FP-Form that developed for the form work rationalization and systematization. The result of this study follows; (1) Fluidity and strength development of mortar which used for FP-Form are satisfied (2) After study on getting good bond strength progress, inside-uneven type presents the better suitableness, and wire netting V-type presents the better shear strength.

  • PDF

Experimental investigation of a frame retrofitted with carbon textile reinforced mortar

  • Sinan M., Cansunar;Kadir, Guler
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.473-491
    • /
    • 2022
  • The research investigates experimentally the effect of confinement on structural behavior at the ends of beam-column in reinforced concrete (RC) frames. In the experimental study, five specimens consisting of 1/3-scaled RC frames having single-bay, representing the traditional deficiencies of existing buildings constructed without receiving proper engineering service is investigated. The RC frame specimens were produced to represent most of the existing buildings in Turkey that have damage potential. To decrease the probable damage to the existing buildings exposed to earthquakes, the carbon Textile Reinforced Mortar (TRM) strengthening technique (fully wrapping) was used on the ends of the RC frame elements to increase the energy dissipation and deformation capacity. The specimens were tested under reversed cyclic lateral loading with constant axial loads. They were constructed satisfying the weak column-strong beam condition and consisting of low-strength concrete, such as compressive strength of 15 MPa. The test results were compared and evaluated considering stiffness, strength, energy dissipation capacity, structural damping, ductility, and damage propagation in detail. Comprehensive investigations of these experimental results reveal that the strengthening of a brittle frame with fully-TRM wrapping with non-anchored was effective in increasing the stiffness, ductility, and energy dissipation capacities of RC bare frames. It was also observed that the frame-only-retrofitting with an infill wall is not enough to increase the ductility capacity. In this case, both the frame and infill wall must be retrofitted with TRM composite to increase the stiffness, lateral load carrying, ductility and energy dissipation capacities of RC frames. The presented strengthening method can be an alternative strengthening technique to enhance the seismic performance of existing or moderately damaged RC buildings.

Structural Behavior of Reinforced Concrete Beam Strengthened in Shear by Carbon Fiber Mesh and Mortar (탄소섬유메쉬와 모르터로 전단 보강된 RC보의 거동에 관한 연구)

  • Seo, Soo-Yeon;Yoon, Seung-Joe;Lee, Woo-Jin;Lee, Jong-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.205-211
    • /
    • 2004
  • The purpose of this study is to investigate shear strengthening effects and behaviour of RC beams strengthened in shear by Carbon Fiber Mesh(CFM) and mortar for fixing CFM to concrete. Test parameters in experiment are shear span-to-depth ratio, layout of CFM and number of clip. From the test, it was shown that the governing failure patten was the bond failure between cover mortar and RC beam initiated at about 60% of maximum strength. And the strength of CFM was developed up to 19.6% of it's maximum tensile strength when the specimen reached to failure. The most effective enhancement using CFM and mortar were to attach CFM diagonally to concrete in a/d of 1.0 and increase the number of cilps in a/d of 1.5, respectively.

A Study on the Failure Behavior of Carbon Fiber Sheet Reinforced Mortar Using Acoustic Emission Technique (AE를 이용한 탄소섬유시트 강화 모르타르의 파괴거동에 관한 연구)

  • 이진경;이준현;장일영
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.67-75
    • /
    • 2000
  • It was well recognized that the damages associated mainly with the aging of civil infrastructures were one of very serious problems for assurance of safety and reliability. Recently carbon fiber sheet(CFS) has been widely used for reinforcement and rehabilitation of damaged concrete beam. However, the fundamental mechanism of load transfer and its load-resistant for carbon fiber sheet reinforced concrete are not fully understood. In this study, three point bending test has been carried out to understand the damage progress and the micro-failure mechanism of CFS reinforced mortars. For this purpose, four different types of specimens are used, that is, mortar, steel bar reinforced mortar, CFS reinforced mortar, and steel bar and CFS reinforced morter. Acoustic Emission(AE) technique was used to evaluate the characteristics of damage progress and the failure mechanism of specimens. in addition, two-dimensional AE source location was also performed to monitor crack initiation and propagation processes for these specimens.

Evaluation of Seismic Performance of High Strength Reinforced Concrete Exterior Beam-Column Joints Using High Ductile Fiber-Reinforced Mortar (고인성섬유 복합모르타르를 활용한 고강도 철근콘크리트 외부 보-기둥 접합부의 내진성능평가)

  • Ha, Gee-Joo;Shin, Jong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.419-428
    • /
    • 2013
  • In this study, experimental research was carried out to evaluate the constructability and seismic performance of high strength R/C exterior beam-column joints regions, with or without the shear reinforcement, using high ductile fiber-reinforced mortar. Five specimens of retrofitted the exterior beam-column joint regions using high ductile fiber-reinforced mortar are constructed and tested for their retrofit performances. Specimens designed by retrofitting the exterior beam-column joint regions (BCJNSP series) of existing reinforced concrete building showed a stable mode of failure and an increased its maximum load-carrying capacity by 1.09~2.03 times in comparison with specimen of BCJNS due to the effect of enhancing dispersion of crack control at the time of initial loading and bridging of fiber from retrofitting new high ductile materials during testing. Specimens of BCJNSP series attained its maximum load carrying capacity by 0.92~0.96 times and increased its energy dissipation capacity by 1.62 times when compared to standard specimen of BCJC with a displacement ductility of 4.

An Experimental Study on Mortar Beam Stengthened by Composite Material (모르타르 보의 복합재료 보강 효과에 관한 실험적 연구)

  • 차승환;정일섭
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2000
  • Excellent environmental durability and handy installation procedure as well as high specific strength and stiffness have introduced fiber-reinforced polymeric composite materials into the civil and architectural engineering field. This study presents the considerably enhanced strength characteristics of the mortal beams by being reinforced with epoxy-bonded carbon fiber sheets(CFS). Three point bending and Charpy impact tests were performed on both of bare and reinforced mortar specimens. The influences of length, and the number of reinforcing plies were investigated. Strength reduction due to pre-existent notch was lessened dramatically. The acoustic emission(AE) measurement revealed the progressive damage process in reinforced specimens.

  • PDF

Structural Response of Reinforced Concrete Beams Strengthened with CERP Rod

  • Moon Do-Young;Sim Jong-Sung;Oh Hong-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1085-1090
    • /
    • 2005
  • Rod-type fiber reinforced polymer plastics(FRPs) similar to reinforcing steel bars have rarely been considered. In this study, an experiment was performed using beams strengthened with rod-type CFRPs and high-strength mortar overlay. The test results show that the strengthened beams not only had improved endurance limits but also improved load carrying capacities, stiffness values, and cracking loads as compared to a non-strengthened beam. Strengthened beams anchored with bolts throughout their entire span had more efficient structural behaviors, including composite behavior on the interface between the concrete and mortar, and load carrying capacity, than a strengthened beam anchored only on the end block.