최근 급격한 기대수명의 증가에 따라 미래 복지정책 등에 커다란 영향을 주는 장래 사망력의 정확한 예측은 중요한 이슈가 되고 있다. 사망력의 정확한 예측을 위하여 최적의 추정모형의 선택도 중요하지만 사망력에 대한 시계열 적용기간도 매우 중요한 이슈다. 이는 우리나라의 사망률 시계열이 짧고, 특히 1982년 이전 자료가 다소 불완전해서 이에 대한 고려가 필수적이기 때문이다. 본 논문에서는 우리나라 사망력 시계열을 기간에 따라 2개의 그룹(1976~2005년, 1983~2005년)으로 나누어서, 남녀별로 LC모형과 LC 코호트효과 확장모형에 대한 모수 추정값, 사망력지수와 코호트지수의 모형화 및 예측, 장래 기대수명의 예측 적합력을 각각 분석한 후 향후에 장래 기대수명 추계시 고려할 시사점을 제시하고자 한다.
Konstantinos Alexiou;Antonios A. Koutalos;Sokratis Varitimidis;Theofilos Karachalios;Konstantinos N. Malizos
Hip & pelvis
/
제36권2호
/
pp.135-143
/
2024
Purpose: Hip fractures are associated with increased mortality. The identification of risk factors of mortality could improve patient care. The aim of the study was to identify risk factors of mortality after surgery for a hip fracture and construct a mortality model. Materials and Methods: A cohort study was conducted on patients with hip fractures at two institutions. Five hundred and ninety-seven patients with hip fractures that were treated in the tertiary hospital, and another 147 patients that were treated in a secondary hospital. The perioperative data were collected from medical charts and interviews. Functional Assessment Measure score, Short Form-12 and mortality were recorded at 12 months. Patients and surgery variables that were associated with increased mortality were used to develop a mortality model. Results: Mortality for the whole cohort was 19.4% at one year. From the variables tested only age >80 years, American Society of Anesthesiologists category, time to surgery (>48 hours), Charlson comorbidity index, sex, use of anti-coagulants, and body mass index <25 kg/m2 were associated with increased mortality and used to construct the mortality model. The area under the curve for the prediction model was 0.814. Functional outcome at one year was similar to preoperative status, even though their level of physical function dropped after the hip surgery and slowly recovered. Conclusion: The mortality prediction model that was developed in this study calculates the risk of death at one year for patients with hip fractures, is simple, and could detect high risk patients that need special management.
Kim, Ho Jin;Kim, Joon Bum;Kim, Seon-Ok;Yun, Sung-Cheol;Lee, Sak;Lim, Cheong;Choi, Jae Woong;Hwang, Ho Young;Kim, Kyung Hwan;Lee, Seung Hyun;Yoo, Jae Suk;Sung, Kiick;Je, Hyung Gon;Hong, Soon Chang;Kim, Yun Jung;Kim, Sung-Hyun;Chang, Byung-Chul
Journal of Chest Surgery
/
제54권2호
/
pp.88-98
/
2021
Background: This study aimed to develop a new risk prediction model for operative mortality in a Korean cohort undergoing heart valve surgery using the Korea Heart Valve Surgery Registry (KHVSR) database. Methods: We analyzed data from 4,742 patients registered in the KHVSR who underwent heart valve surgery at 9 institutions between 2017 and 2018. A risk prediction model was developed for operative mortality, defined as death within 30 days after surgery or during the same hospitalization. A statistical model was generated with a scoring system by multiple logistic regression analyses. The performance of the model was evaluated by its discrimination and calibration abilities. Results: Operative mortality occurred in 142 patients. The final regression models identified 13 risk variables. The risk prediction model showed good discrimination, with a c-statistic of 0.805 and calibration with Hosmer-Lemeshow goodness-of-fit p-value of 0.630. The risk scores ranged from -1 to 15, and were associated with an increase in predicted mortality. The predicted mortality across the risk scores ranged from 0.3% to 80.6%. Conclusion: This risk prediction model using a scoring system specific to heart valve surgery was developed from the KHVSR database. The risk prediction model showed that operative mortality could be predicted well in a Korean cohort.
우리는 응급실을 방문한 65세 이상 노인환자의 의료 데이터를 각각 피드 포워드 신경망과 합성곱 신경망에 학습하여 사망률을 예측하였다. 의료 데이터는 노인환자의 성별, 연령, 체온, 심박 수 등의 기초적인 정보뿐 아니라 과거 병력, 다양한 혈액 검사 및 배양 검사 결과 등 다양하고 복잡한 정보를 포함하여 총 99가지의 자질로 구성된다. 이 중 사망률 예측에 크게 기여하는 자질을 선택하기 위해 랜덤 포레스트를 이용하여 자질의 중요도를 계산하였고, 그 결과 중요도가 높은 상위 80개의 자질을 선택하였다. 선택된 자질을 각각 피드 포워드 신경망과 합성곱 신경망의 학습에 사용하여 두 신경망의 성능을 비교하였다. 합성곱 신경망 학습을 위해 의료 데이터를 고정된 크기의 이미지로 변환하였으며 합성곱 신경망이 피드 포워드 신경망을 이용한 것보다 성능이 좋았다. 합성곱 신경망의 사망률 예측 성능으로 테스트 데이터에 대해 F1 점수는 56.9, AUC는 92.1을 각각 얻었다.
Purpose: PL, creatinine and urine output are biomarkers of the suitability and prognosis of fluid therapy in severe burn patients. The purpose of this study is to evaluate the usefulness of predicting mortality by biomarkers and its change during initial fluid therapy for severe burn patients. Methods: A retrograde review was performed on 733 patients from January 2014 to December 2018 who were admitted as severe burn patients to our burn intensive care unit (BICU). Plasma lactate, serum creatinine and urine output were measured at the time of admission to the BICU and after 48 hours. ABSI score, Hangang score, APACHEII, revised Baux index and TBSA were collected after admission. Results: 733 patients were enrolled. PL was the most useful indicators for predicting mortality in burn patients at the time of admission (AUC: 0.813) and after 48 hours (AUC: 0.698). On the other hand, mortality prediction from initial fluid therapy for 48 hours showed different results. Only creatinine showed statistical differences (P<0.05) in mortality prediction. But there were no statistical differences in mortality prediction with PL and UO (P>0.05). Conclusion: In this study, PL was most useful predictor among biomarkers for predicting mortality. Improvement in creatinine levels during the first 48 hours is associated with improved mortality. Therefore, efforts are needed to improve creatinine levels.
Tang, Wen-Rui;Fang, Jia-Ying;Wu, Ku-Sheng;Shi, Xiao-Jun;Luo, Jia-Yi;Lin, Kun
Asian Pacific Journal of Cancer Prevention
/
제15권16호
/
pp.6929-6934
/
2014
Background: To analyze the mortality distribution of esophageal cancer in China from 1991 to 2012, to forecast the mortality in the future five years, and to provide evidence for prevention and treatment of esophageal cancer. Materials and Methods: Mortality data for esophageal cancer in China from 1991 to 2012 were used to describe its epidemiological characteristics, such as the change of the standardized mortality rate, urban-rural differences, sex and age differences. Trend-surface analysis was used to study the geographical distribution of the mortality. Curve estimation, time series, gray modeling, and joinpoint regression were used to predict the mortality for the next five years in the future. Results: In China, the incidence rate of esophageal cancer from 2007 and the mortality rate of esophageal cancer from 2008 increased yearly, with males at $8.72/10^5$ being higher than females, and the countryside at $15.5/10^5$ being higher than in the city. The mortality rate increased from age 45. Geographical analysis showed the mortality rate increased from southern to eastern China, and from northeast to central China. Conclusions: The incidence rate and the standardized mortality rate of esophageal cancer are rising. The regional disease control for esophageal cancer should be focused on eastern, central and northern regions China, and the key targets for prevention and treatment are rural men more than 45 years old. The mortality of esophageal cancer will rise in the next five years.
Xu, Zhen-Xi;Lin, Zhi-Xiong;Fang, Jia-Ying;Wu, Ku-Sheng;Du, Pei-Ling;Zeng, Yang;Tang, Wen-Rui;Xu, Xiao-Ling;Lin, Kun
Asian Pacific Journal of Cancer Prevention
/
제16권15호
/
pp.6729-6734
/
2015
Background: To analyze the mortality distribution of nasopharyngeal carcinoma in China from 1991 to 2013, to predict the mortality in the ensuing five years, and to provide evidence for prevention and treatment of nasopharyngeal carcinoma. Materials and Methods: Mortality data for Nasopharyngeal Carcinoma in China from 1991 to 2013 were used to describe its epidemiological characteristics, such as the change of the standardized mortality rate, sex and age differences, urban-rural differences. Trend-surface analysis was used to study the geographical distribution of the mortality. Curve estimation, time series, gray modeling, and joinpoint regression were used to predict the mortality for the ensuing five years in the future. Results: In China, the standardized mortality rate of Nasopharyngeal Carcinoma increased with time from 1996, reaching the peak values of $1.45/10^5$ at the year of 2002, and decreased gradually afterwards. With males being 1.51 times higher than females, and the city had a higher rate than the rural during the past two decades. The mortality rate increased from age 40. Geographical analysis showed the mortality rate increased from middle to southern China. Conclusions: The standardized mortality rate of Nasopharyngeal Carcinoma is falling. The regional disease control for Nasopharyngeal Carcinoma should be focused on Guangdong province of China, and the key targets for prevention and treatment are rural men, especially after the age of 40. The mortality of Nasopharyngeal Carcinoma will decrease in the next five years.
세계 인구의 고령화가 진행되는 오늘날 노인들을 위한 의료 서비스의 수요는 점차 증가할 것으로 보인다. 특히, 응급실을 방문하는 노인 환자는 일반 환자보다 다양한 질병을 갖고 있거나, 특이한 증상을 호소하는 등 복잡한 의학적, 사회적 및 신체적 문제를 가지고 있는 경우가 많다. 우리는 65세 이상의 응급실을 방문한 노인 환자의 사망률 예측을 위해 연령, 성별, 혈압, 체온, 혈액검사, 주증상명 등의 의료 데이터를 사용하였다. Feed Forward 신경망과 지지벡터기계를 각각 학습하여 사망률을 예측하고 그 성능을 비교하였다. 1개의 은닉층을 사용한 Feed Forward 신경망의 실험결과가 가장 좋았으며, 이 때 F1 점수는 52.0%, AUC는 88.6%이다. 좀 더 좋은 의료 자질을 추출하여 제안 시스템의 성능을 향상시킨다면 응급실에 방문한 노인 환자들을 위한 효과적이고 신속한 의료 자원 배분을 통해 더 좋은 의료 서비스를 제공할 수 있을 것이다.
Objective: Machine learning is not yet widely used in the medical field. Therefore, this study was conducted to compare the performance of preexisting severity prediction models and machine learning based models (random forest [RF], gradient boosting [GB]) for mortality prediction in pneumonia patients. Methods: We retrospectively collected data from patients who visited the emergency department of a tertiary training hospital in Seoul, Korea from January to March of 2015. The Pneumonia Severity Index (PSI) and Sequential Organ Failure Assessment (SOFA) scores were calculated for both groups and the area under the curve (AUC) for mortality prediction was computed. For the RF and GB models, data were divided into a test set and a validation set by the random split method. The training set was learned in RF and GB models and the AUC was obtained from the validation set. The mean AUC was compared with the other two AUCs. Results: Of the 536 investigated patients, 395 were enrolled and 41 of them died. The AUC values of PSI and SOFA scores were 0.799 (0.737-0.862) and 0.865 (0.811-0.918), respectively. The mean AUC values obtained by the RF and GB models were 0.928 (0.899-0.957) and 0.919 (0.886-0.952), respectively. There were significant differences between preexisting severity prediction models and machine learning based models (P<0.001). Conclusion: Classification through machine learning may help predict the mortality of pneumonia patients visiting the emergency department.
본 연구는 기존의 잣나무임분 거리독립 개체목 생장모델을 개선하기 위해 수행되었다. 직경생장함수 및 고사율함수의 매개변수들을 고정표본점의 정기평균생장량을 토대로 추정하고, 이 함수들의 특성을 기존의 총평균생장량을 토대로 추정한 모델과 비교하였다. 여기서 생장함수는 수관율함수, 잠재직경생장함수 및 임분을 구성하는 임목간 경쟁효과를 고려하기 위한 수정율함수를 의미한다. 고사율예측함수의 경우에는 고정표본점 자료의 한계로 인해 정기평균생장량 측정값을 구할 수 없어 대신 총평균생장량과의 관계식을 추정하여 대체하여 적용하였다. 연구결과 정기평균생장량을 토대로 하는 직경생장함수가 총평균생장량을 토대로 추정한 함수에 비해 개체목의 생장특성을 보다 현실적으로 반영하는 것을 보여주었다. 고사율함수의 경우, 총평균생장량을 적용하여 개발한 경우 고사율이 과대한 것으로 나타나는 문제가 있었으나 새로운 모델에서는 이 문제가 개선된 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.