• Title/Summary/Keyword: Morphology algorithm

Search Result 235, Processing Time 0.022 seconds

A study of parametric design methodology for 3D modeling parameters of biomorphic clothing sculpture (파라메트릭 디자인 방법론을 적용한 바이오모픽 의상조각 모델링 프로세스와 구성요소 분석)

  • Yoo, Young-Sun;Cho, Min-Jin
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.21 no.2
    • /
    • pp.109-122
    • /
    • 2019
  • The purpose of this study is to examine the clothing component information and attributes as the control parameters for the 3D modeling process of the biomorphic clothing sculpture using a parametric methodology. The 3D modeling parameters of biomorphic clothing sculpture were identified as exaggerated silhouette, surface texture, and digital color. The types of exaggerated silhouettes were shoulder and hip exaggeration, shoulder exaggeration, hip exaggeration, vertical exaggeration, and horizontal exaggeration. The types of surface texture were embossed, lacy, furry, and complex textures. The types of digital color were chrome, blur, blend, and acid colors. The characteristics of morphological representation due to the attributes of these control variables were identified as morphological variation, organic morphology, organizational morphology, and realistic morphology. As a result, it was found that the parameter attributes were applied to the biomorphic clothing sculpture parametric design process and developed into various shapes.

A Study on Stethoscope Signal Analysis for Normal and Heart-diseased Children (정상 및 심질환 소아의 청진음 분석에 관한 연구)

  • Kim, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.715-720
    • /
    • 2017
  • This study tries to analyze morphology and formant frequencies of linear prediction spectra of stethoscope sounds for heart diseased children. For this object, heart diseased stethoscope sounds were collected in the pediatrics of an university hospital. The collected signals were preprocessed and analyzed by the Burg algorithm, a kind of linear prediction analysis. The linear prediction spectra and the formant frequencies of the spectra for the stethoscope sounds for the normal and the diseased children are estimated and compared. The spectra showed outstanding differences in morphology and formant frequencies between the normal and the diseased children. Normal children showed relatively low frequency of F1(the first formant) and small negative slope from F1. VSD children revealed stiff slope change around F1 to F3. Spectra of ASD children is similar with the normal case, but have negative values of F3. F1-F2 difference of the functional murmur children were relatively large.

Color image segmentation using clustering based on mathematical morphology (수학적 형태학에 기반한 클러스터링을 이용한 칼라영상의 영역화)

  • 박상호;윤일동;이상욱
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.8
    • /
    • pp.68-80
    • /
    • 1996
  • In this paper, we propose a novel color image segmentation algorithm based on clustering in 3-dimensional color space employing the mathematical morphology. More specifically, since we take into account the topological properties such as the shape, connectivity and distribution of clusters in the clustering process, the number of clusters in the color cube, as well as their centers, can be easily obtained, without a priori knowledge on the input images. Intensive computer simulation has been performed and the results are discussed in this paper. The resutls of the simulation on the images in various color coordinates show that the segmentation is independent of the choice of color coordinates and the shape of clustes. Segmentation results of the vector quantizer are also presented for the comparison purpose.

  • PDF

An Effective Framework for Contented-Based Image Retrieval with Multi-Instance Learning Techniques

  • Peng, Yu;Wei, Kun-Juan;Zhang, Da-Li
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.18-22
    • /
    • 2007
  • Multi-Instance Learning(MIL) performs well to deal with inherently ambiguity of images in multimedia retrieval. In this paper, an effective framework for Contented-Based Image Retrieval(CBIR) with MIL techniques is proposed, the effective mechanism is based on the image segmentation employing improved Mean Shift algorithm, and processes the segmentation results utilizing mathematical morphology, where the goal is to detect the semantic concepts contained in the query. Every sub-image detected is represented as a multiple features vector which is regarded as an instance. Each image is produced to a bag comprised of a flexible number of instances. And we apply a few number of MIL algorithms in this framework to perform the retrieval. Extensive experimental results illustrate the excellent performance in comparison with the existing methods of CBIR with MIL.

  • PDF

Farm disease detection procedure by image processing on Smart Farming

  • Cho, Sokpal;Chung, Heechang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.405-407
    • /
    • 2017
  • The environmental change is affecting the farm products like tomato, and pepper, etc. This affects to lead smart farming yield. What is more, this inconstant conditions cause the farms to be infected by variety diseases. Therefore ICT technology is needed to detect and prevent the crops from being effected by diseases. This article suggests the procedure to help producer for identifying farms disease based on the detected image. This detects the kind of diseases with comparing the trained image data before and after disease emergence. First step monitors an image of farms and resize it. Its features are extracted on parameters such as color, and morphology, etc. The next steps are used for classification to classify the image as infected or non-infected. on the bassis of detection algorithm.

  • PDF

Prediction of Paroxysmal Atrial Fibrillation using Time-domain Analysis and Random Forest

  • Lee, Seung-Hwan;Kang, Dong-Won;Lee, Kyoung-Joung
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.69-79
    • /
    • 2018
  • The present study proposes an algorithm that can discriminate between normal subjects and paroxysmal atrial fibrillation (PAF) patients, which is conducted using electrocardiogram (ECG) without PAF events. For this, time-domain features and random forest classifier are used. Time-domain features are obtained from Poincare plot, Lorenz plot of ${\delta}RR$ interval, and morphology analysis. Afterward, three features are selected in total through feature selection. PAF patients and normal subjects are classified using random forest. The classification result showed that sensitivity and specificity were 81.82% and 95.24% respectively, the positive predictive value and negative predictive value were 96.43% and 76.92% respectively, and accuracy was 87.04%. The proposed algorithm had an advantage in terms of the computation requirement compared to existing algorithm, so it has suggested applicability in the more efficient prediction of PAF.

Development of Aggregate Recognition Algorithm for Analysis of Aggregate Size and Distribution Attributes (골재 크기와 분포 특성을 분석하기 위한 골재 인식 알고리즘 개발)

  • Seo, Myoung Kook;Lee, Ho Yeon
    • Journal of Drive and Control
    • /
    • v.19 no.3
    • /
    • pp.16-22
    • /
    • 2022
  • Crushers are equipment that crush natural stones, to produce aggregates used at construction sites. As the crusher proceeds, the inner liner becomes worn, causing the size of the aggregate produced to gradually increase. The vision sensor-based aggregate analysis system analyzes the size and distribution of aggregates in production, in real time through image analysis. This study developed an algorithm that can segmentate aggregates in images in real time. using image preprocessing technology combining various filters and morphology techniques, and aggregate region characteristics such as convex hull and concave hull. We applied the developed algorithm to fine aggregate, intermediate aggregate, and thick aggregate images to verify their performance.

A Scale Invariant Object Detection Algorithm Using Wavelet Transform in Sea Environment (해양 환경에서 웨이블렛 변환을 이용한 크기 변화에 무관한 물표 탐지 알고리즘)

  • Bazarvaani, Badamtseren;Park, Ki Tae;Jeong, Jongmyeon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.249-255
    • /
    • 2013
  • In this paper, we propose an algorithm to detect scale invariant object from IR image obtained in the sea environment. We create horizontal edge (HL), vertical edge (LH), diagonal edge (HH) of images through 2-D discrete Haar wavelet transform (DHWT) technique after noise reduction using morphology operations. Considering the sea environment, Gaussian blurring to the horizontal and vertical edge images at each level of wavelet is performed and then saliency map is generated by multiplying the blurred horizontal and vertical edges and combining into one image. Then we extract object candidate region by performing a binarization to saliency map. A small area in the object candidate region are removed to produce final result. Experiment results show the feasibility of the proposed algorithm.

Real-time Small Target Detection using Local Contrast Difference Measure at Predictive Candidate Region (예측 후보 영역에서의 지역적 대비 차 계산 방법을 활용한 실시간 소형 표적 검출)

  • Ban, Jong-Hee;Wang, Ji-Hyeun;Lee, Donghwa;Yoo, Joon-Hyuk;Yoo, Seong-eun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.2
    • /
    • pp.1-13
    • /
    • 2017
  • In This Paper, we find the Target Candidate Region and the Location of the Candidate Region by Performing the Morphological Difference Calculation and Pixel Labeling for Robust Small Target Detection in Infrared Image with low SNR. Conventional Target Detection Methods based on Morphology Algorithms are low in Detection Accuracy due to their Vulnerability to Clutter in Infrared Images. To Address the Problem, Target Signal Enhancement and Background Clutter Suppression are Achieved Simultaneously by Combining Moravec Algorithm and LCM (Local Contrast Measure) Algorithm to Classify the Target and Noise in the Candidate Region. In Addition, the Proposed Algorithm can Efficiently Detect Multiple Targets by Solving the Problem of Limited Detection of a Single Target in the Target Detection method using the Morphology Operation and the Gaussian Distance Function Which were Developed for Real time Target Detection.

Watershed Algorithm-Based RoI Reduction Techniques for Improving Ship Detection Accuracy in Satellite Imagery (인공 위성 사진 내 선박 탐지 정확도 향상을 위한 Watershed 알고리즘 기반 RoI 축소 기법)

  • Lee, Seung Jae;Yoon, Ji Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.8
    • /
    • pp.311-318
    • /
    • 2021
  • Research has been ongoing to detect ships from offshore photographs for a variety of reasons, including maritime security, identifying international trends, and social scientific research. Due to the development of artificial intelligence, R-CNN models for object detection in photographs and images have emerged, and the performance of object detection has risen dramatically. Ship detection in offshore photographs using the R-CNN model has also begun to apply to satellite photography. However, satellite images project large areas, so various objects such as vehicles, landforms, and buildings are sometimes recognized as ships. In this paper, we propose a novel methodology to improve the performance of ship detection in satellite photographs using R-CNN series models. We separate land and sea via marker-based watershed algorithm and perform morphology operations to specify RoI one more time, then detect vessels using R-CNN family models on specific RoI to reduce typology. Using this method, we could reduce the misdetection rate by 80% compared to using only the Fast R-CNN.