• Title/Summary/Keyword: Morphological Image Processing

Search Result 229, Processing Time 0.024 seconds

Automatic Segmentation of Skin and Bone in CT Images using Iterative Thresholding and Morphological Image Processing

  • Kang, Ho Chul;Shin, Yeong-Gil;Lee, Jeongjin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.191-194
    • /
    • 2014
  • This paper proposes a fast and efficient method to extract the skin and bone automatically in CT images. First, the images were smoothed by applying an anisotropic diffusion filter to remove noise. The whole body was then detected by thresholding, which was set automatically. In addition, the contour of the skin was segmented using morphological operators and connected component labeling (CCL). Finally, the bone was extracted by iterative thresholding.

Direct globally minimal skeleton with binary morphological processing (이진 형태론을 적용한 직접 총체적 최소 골격화)

  • 정기용;김신환;김두영;김명기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.576-586
    • /
    • 1996
  • Original binary image can be reconstructed by morphological bymorphological skeleton(MS) image. And then, the information of MS image points can be applied to a pattern recognition andimage communication. But if we apply MS to a pattern recognition and image communication, there are two problems. That is to say, binary MS processing times is long and skeleton points of MS are high redundancy. And then, to solve these problems, this paper proposes DGMS. After simulating by the proposed method to $256{\times}256$ binary image which is GIRL, we reduce processing time and skeleton points about 1.5~6.5% comparing with the result of GMS method.

  • PDF

Application of Image Processing Technique to Improve Production Efficiency of Fine Pitch Hole Based on Laser (레이저 미세피치 홀 가공의 생산효율성 향상을 위한 영상처리 측정 기법 적용)

  • Pyo, C.R.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.320-324
    • /
    • 2010
  • Multi-Layer Ceramic Circuit(MLCC) in the face of thousands of fine pitch multi hole is processed. However, the fine pitch multi hole has a size of only a few micrometers. Therefore, in order to curtail the measurement time and reduce error, the image processing measurement method is required. So, we proposed an image processing measurement algorithm which is required to accurately measure the fine pitch multi hole. The proposed algorithm gets image of the fine pitch multi hole, extracts object from the image by morphological process, and extracts the parameters of its position and feature by edge detecting process. In addition, we have used the sub-pixel algorithm to improve accuracy. As a result, the proposed algorithm shows 97% test-retest measurement reliability within 2 ${\mu}m$. We found that the algorithm was wellsuited for measuring the fine pitch multi hole.

Template Mask based Parking Car Slots Detection in Aerial Images

  • Wirabudi, Andri Agustav;Han, Heeji;Bang, Junho;Choi, Haechul
    • Journal of Broadcast Engineering
    • /
    • v.27 no.7
    • /
    • pp.999-1010
    • /
    • 2022
  • The increase in vehicle purchases worldwide is having a very significant impact on the availability of parking spaces. In particular, since it is difficult to secure a parking space in an urban area, it may be of great help to the driver to check vehicle parking information in advance. However, the current parking lot information is still operated semi-manually, such as notifications. Therefore, in this study, we propose a system for detecting a parking space using a relatively simple image processing method based on an image taken from the sky and evaluate its performance. The proposed method first converts the captured RGB image into a black-and-white binary image. This is to simplify the calculation for detection using discrete information. Next, a morphological operation is applied to increase the clarity of the binary image, and a template mask in the form of a bounding box indicating a parking space is applied to check the parking state. Twelve image samples and 2181 total of test, were used for the experiment, and a threshold of 40% was used to detect each parking space. The experimental results showed that information on the availability of parking spaces for parking users was provided with an accuracy of 95%. Although the number of experimental images is somewhat insufficient to address the generality of accuracy, it is possible to confirm the possibility of parking space detection with a simple image processing method.

Cell Image Processing Methods for Automatic Cell Pattern Recognition and Morphological Analysis of Mesenchymal Stem Cells - An Algorithm for Cell Classification and Adaptive Brightness Correction -

  • Lim, Kitaek;Park, Soo Hyun;Kim, Jangho;SeonWoo, Hoon;Choung, Pill-Hoon;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.55-63
    • /
    • 2013
  • Purpose: The present study aimed at image processing methods for automatic cell pattern recognition and morphological analysis for tissue engineering applications. The primary aim was to ascertain the novel algorithm of adaptive brightness correction from microscopic images for use as a potential image analysis. Methods: General microscopic image of cells has a minor problem which the central area is brighter than edge-area because of the light source. This may affect serious problems to threshold process for cell-number counting or cell pattern recognition. In order to compensate the problem, we processed to find the central point of brightness and give less weight-value as the distance to centroid. Results: The results presented that microscopic images through the brightness correction were performed clearer than those without brightness compensation. And the classification of mixed cells was performed as well, which is expected to be completed with pattern recognition later. Beside each detection ratio of hBMSCs and HeLa cells was 95% and 92%, respectively. Conclusions: Using this novel algorithm of adaptive brightness correction could control the easier approach to cell pattern recognition and counting cell numbers.

Application of Neural Network to Prediction and estimation of Rolling Condition for Hydraulic members (유압구동부재의 구름운동상태 예지 및 판정을 위한 신경 회로망의 적용)

  • 조연상;김동호;박흥식;전태옥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.646-649
    • /
    • 2002
  • It can be effect on diagnosis of hydraulic machining system to analyze working conditions with shape characteristics of wear debris in a lubricated machine. But, in order to predict and estimate working conditions, it is need to analyze the shape characteristics of wear debris and to identify. Therefor, if shape characteristics of wear debris is identified by computer image analysis and the neural network, it is possible to find the cause and effect of moving condition. In this study, wear debris in the lubricant oil are extracted by membrane filter, and the quantitative value of shape characteristics of wear debris we calculated by the digital image processing. This morphological informations are studied and identified by the artificial neural network. The purpose of this study is In apply morphological characteristics of wear debris to prediction and estimation of working condition in hydraulic driving systems.

  • PDF

An Optimal Decomposition Algorithm for Convex Structuring Elements (볼록 구조자룰 위한 최적 분리 알고리듬)

  • 온승엽
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1167-1174
    • /
    • 1999
  • In this paper, we present a new technique for the local decomposition of convex structuring elements for morphological image processing. Local decomposition of a structuring element consists of local structuring elements, in which each structuring element consists of a subset of origin pixel and its eight neighbors. Generally, local decomposition of a structuring element reduces the amount of computation required for morphological operations with the structuring element. A unique feature of our approach is the use of linear integer programming technique to determine optimal local decomposition that guarantees the minimal amount of computation. We defined a digital convex polygon, which, in turn, is defined as a convex structuring element, and formulated the necessary and sufficient conditions to decompose a digital convex polygon into a set of basis digital convex polygons. We used a set of linear equations to represent the relationships between the edges and the positions of the original convex polygon, and those of the basis convex polygons. Further. a cost function was used represent the total processing time required for computation of dilation/erosion with the structuring elements in a decomposition. Then integer linear programming was used to seek an optimal local decomposition, that satisfies the linear equations and simultaneously minimize the cost function.

  • PDF

Number Recognition of Dot Matrix LED Display Using Morphological Processing and Template Matching (영상 형태학적 처리와 원형 정합을 이용한 도트 매트릭스 LED 디스플레이의 숫자 인식)

  • Jung, Min Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.41-46
    • /
    • 2018
  • This paper proposes a new method for the number recognition on dot matrix LED display. The proposed method uses morphological processing that dilates dots of numbers and connects the dots into strokes. The size of numbers is normalized using horizontal projection because the gaps of dots are different according to the size of numbers. The numbers are segmented by connected component analysis and finally, template matching method recognizes the segmented numbers. The proposed method is implemented using C language in Raspberry Pi system with a camera module for a real-time image processing. Experiments were conducted by using various dot matrix LED displays. The results show that the proposed method is successful for the number recognition on dot matrix LED display.

Robust Real-Time Lane Detection in Luminance Variation Using Morphological Processing (형태학적 처리를 이용한 밝기 변화에 강인한 실시간 차선 검출)

  • Kim, Kwan-Young;Kim, Mi-Rim;Kim, In-Kyu;Hwang, Seung-Jun;Beak, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.1101-1108
    • /
    • 2012
  • In this paper, we proposed an algorithm for real-time lane detecting against luminance variation using morphological image processing and edge-based region segmentation. In order to apply the most appropriate threshold value, the adaptive threshold was used in every frame, and perspective transform was applied to correct image distortion. After that, we designated ROI for detecting the only lane and established standard to limit region of ROI. We compared performance about the accuracy and speed when we used morphological method and do not used. Experimental result showed that the proposed algorithm improved the accuracy to 98.8% of detection rate and speed of 36.72ms per frame with the morphological method.

Image Processing Methods for Measurement of Lettuce Fresh Weight

  • Jung, Dae-Hyun;Park, Soo Hyun;Han, Xiong Zhe;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.40 no.1
    • /
    • pp.89-93
    • /
    • 2015
  • Purpose: Machine vision-based image processing methods can be useful for estimating the fresh weight of plants. This study analyzes the ability of two different image processing methods, i.e., morphological and pixel-value analysis methods, to measure the fresh weight of lettuce grown in a closed hydroponic system. Methods: Polynomial calibration models are developed to relate the number of pixels in images of leaf areas determined by the image processing methods to actual fresh weights of lettuce measured with a digital scale. The study analyzes the ability of the machine vision- based calibration models to predict the fresh weights of lettuce. Results: The coefficients of determination (> 0.93) and standard error of prediction (SEP) values (< 5 g) generated by the two developed models imply that the image processing methods could accurately estimate the fresh weight of each lettuce plant during its growing stage. Conclusions: The results demonstrate that the growing status of a lettuce plant can be estimated using leaf images and regression equations. This shows that a machine vision system installed on a plant growing bed can potentially be used to determine optimal harvest timings for efficient plant growth management.