• Title/Summary/Keyword: Morphological Image Processing

Search Result 229, Processing Time 0.029 seconds

Morphological Analysis of Hydraulic Driving Surface using Fractal Dimension (프랙탈 차원을 이용한 유압구동 습동면의 형상해석)

  • 전성재;배효준;김동호;서영백;박흥식
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.23-28
    • /
    • 2000
  • The determination of surface morphology is believed to be extremely important in the areas of contact mechanics, adhesion and friction. In order to describe morphology of various rubbed surface, the wear test was carried out under different experimental conditions in lubricating wear. And fractal descriptors was applied to rubbed surface of hydraulic driving material with image processing system. These descriptors to analyze surface structure are fractal dimension. Surface fractal dimension can be determined by sum of intensity difference of surface pixel. Morphology of rubbed surface can be effectively obtained by fractal dimensions.

  • PDF

Developing Expert System for Restoration to the Original Character Form of Ancient Relics Based on Image Processing and Computer Graphics (문화재의 문자 복원을 위한 전문가 시스템 개발: 영상처리 및 컴퓨터 그래픽스 활용을 중심으로)

  • Moon, Ho-Seok;Sohn, Myung-Ho
    • Journal of Information Technology Services
    • /
    • v.7 no.4
    • /
    • pp.139-149
    • /
    • 2008
  • We propose expert system for restoration the original character form of ancient relics based on image processing and computer graphics. Letters engraved in relief like relics and intaglio like curved tombstones and letters engraved in plane or curved part of cultural asset may have been broken by a lot of rubbed copy, a long time and tide. In this paper, we suggest a new method for extracting and recovering the broken letters of cultural asset into an original form by using Z-map, morphological filter, and high frequency filter. Based on the suggested method. we develop the character recovering system.

Development of Medical Image Processing Algorithm for Clinical Decision Support System Applicable to Patients with Cardiopulmonary Function (심폐기능 재활환자용 임상의사결정지원시스템을 위한 의료영상 처리 기술 개발)

  • Park, H.J.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.1
    • /
    • pp.61-66
    • /
    • 2015
  • Chest X-ray images is the most common and widely used in clinical findings for a wide range of anatomical information about the prognosis of the disease in patients with cardiopulmonary rehabilitation. Many analysis algorithm was developed by a number of studies regarding the region segmentation and image analysis, there are specific differences due to the complexity and diversity of the image. In this paper, a diagnosis support system of the chest X-ray image based on image processing and analysis methods to detect the cardiopulmonary disease. The threshold value and morphological method was applied to segment the pulmonary region in a chest X-ray image. Anatomical measurements and texture analysis was performed on the segmented regions. The effectiveness of the proposed method is shown through experiments and comparison with diagnosis results by clinical experts to show that the proposed method can be used for decision support system.

  • PDF

An Extraction of Moving Object Contour Using Active Contour Model (능동 윤곽선 모델을 이용한 이동 물체 윤곽선 추출)

  • 이상욱;권태하
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.123-130
    • /
    • 2000
  • In this paper, we propose an extracting method of moving object contour using active contour model from image sequences acquired by fixed camera. We use an adaptive background model for robust processing in surrounding conditions. Object segmentation model detects pixels thresholded from local difference image between background and current image and extracts connected regions. Noises in boundary area of moving object we eliminated by morphological filter. The contour of segmented object is corrected by using active contour model for extracting accurate boundary of moving object. We apply the proposed method to highway image sequences and show the results of simulation.

  • PDF

Survey of Image Segmentation Algorithms for Extracting Retinal Blood Vessels (망막혈관 검출을 위한 영상분할기법)

  • Kim, Jeong-Hwan;Seo, Seung-Yeon;Song, Chul-Gyu;Kim, Kyeong-Seop
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.397-398
    • /
    • 2019
  • 망막혈관 영상에서(retinal image) 혈관의 모양 또는 생성변화를 효과적으로 검진하기 위해서 망막혈관을 자동적으로 분리하는 영상분할 기법의 개발은 매우 중요한 사안이다. 이를 위해서 주로 망막혈관영상의 잡음을 억제하고 또한 혈관의 명암대비도(contrast)를 증가시키는 전처리 과정을 거쳐서 혈관의 국부적인 화소값의 변화, 방향성을 판별하여 혈관을 자동적으로 검출하는 방법들이 제시되어왔으며 최근에는 합성곱 신경망(CNN) 딥러닝 학습모델을 활용한 망막혈관 분리 알고리즘들이 제시되고 있다.

  • PDF

Physical Properties Analysis of Mango using Computer Vision

  • Yimyam, Panitnat;Chalidabhongse, Thanarat;Sirisomboon, Panmanas;Boonmung, Suwanee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.746-750
    • /
    • 2005
  • This paper describes image processing techniques that can detect, segment, and analyze the mango's physical properties such as size, shape, surface area, and color from images. First, images of mangoes taken by a digital camera are analyzed and segmented. The segmentation is done based on constructed hue model of the sample mangoes. Some morphological and filtering techniques are then applied to clean noises before fitting spline curve on the mango boundary. From the clean segmented image, the mango projected area can be computed. The shape of the mango is then analyzed using some structuring models. Color is also spatially analyzed and indexed in the database for future classification. To obtain the surface area, the mango is peeled. The scanned image of its peels is then segmented and filtered using similar approach. With calibration parameters, the surface area could then be computed. We employed the system to evaluate physical properties of a mango cultivar called "Nam Dokmai". There were sixty mango samples in three various sizes graded by an experienced farmer's eyes and hands. The results show the techniques could be a good alternative and more feasible method for grading mango comparing to human's manual grading.

  • PDF

A Bone Region Extraction Method based on Snake Algorithm and Particle Filter in CT image (CT 영상에서 스네이크 알고리즘과 파티클 필터를 이용한 뼈 영역 추출 방법)

  • Jung, Sung-Tae;Kim, Young-Un;Kang, Sun-Kyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.243-252
    • /
    • 2018
  • In this paper, we propose a bone region extraction method using a snake algorithm and a particle filter in CT image. We extract the bone outline using the snake algorithm, and extract the bone area by moving the particle filter along this outline. If other bones are in close proximity to the bone outline, the snake algorithm may not be able to extract the bone outline completely. At this time, the particle filter extracts the bone area while compensating for the error. In this paper, we compared the proposed method with the conventional morphological processing method. The result is similar when other bones are not close to the bone area to be extracted. However, if other bones are close to each other, The accuracy of the proposed method is higher than the conventional morphological processing method.

A Computer Vision-based Method for Detecting Rear Vehicles at Night (컴퓨터비전 기반의 야간 후방 차량 탐지 방법)

  • 노광현;문순환;한민홍
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.3
    • /
    • pp.181-189
    • /
    • 2004
  • This paper describes the method for detecting vehicles in the rear and rear-side at night by using headlight features. A headlight is the outstanding feature that can be used to discriminate a vehicle from a dark background. In the segmentation process, a night image is transformed to a binary image that consists of black background and white regions by gray-level thresholding, and noise in the binary image is eliminated by a morphological operation. In the feature extraction process, the geometric features and moment invariant features of a headlight are defined, and they are measured in each segmented region. Regions that are not appropriate to a headlight are filtered by using geometric feature measurement. In region classification, a pair of headlights is detected by using relational features based on the symmetry of a pair of headlights. Experimental results show that this method is very applicable to an approaching vehicle detection system at nighttime.

  • PDF

A Study on the Improvement of Color Detection Performance of Unmanned Salt Collection Vehicles Using an Image Processing Algorithm (이미지 처리 알고리즘을 이용한 무인 천일염 포집장치의 색상 검출 성능 향상에 관한 연구)

  • Kim, Seon-Deok;Ahn, Byong-Won;Park, Kyung-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1054-1062
    • /
    • 2022
  • The population of Korea's solar salt-producing regions is rapidly aging, resulting in a decrease in the number of productive workers. In solar salt production, salt collection is the most labor-intensive operation because existing salt collection vehicles require human operators. Therefore, we intend to develop an unmanned solar salt collection vehicle to reduce manpower requirements. The unmanned solar salt collection vehicle is designed to identify the salt collection status and location in the salt plate via color detection, the color detection performance is a crucial consideration. Therefore, an image processing algorithm was developed to improve color detection performance. The algorithm generates an around-view image by using resizing, rotation, and perspective transformation of the input image, set the RoI to transform only the corresponding area to the HSV color model, and detects the color area through an AND operation. The detected color area was expanded and noise removed using morphological operations, and the area of the detection region was calculated using contour and image moment. The calculated area is compared with the set area to determine the location case of the collection vehicle within the salt plate. The performance was evaluated by comparing the calculated area of the final detected color to which the algorithm was applied and the area of the detected color in each step of the algorithm. It was confirmed that the color detection performance is improved by at least 25-99% for salt detection, at least 44-68% for red color, and an average of 7% for blue and an average of 15% for green. The proposed approach is well-suited to the operation of unmanned solar salt collection vehicles.

A Real-time Motion Object Detection based on Neighbor Foreground Pixel Propagation Algorithm (주변 전경 픽셀 전파 알고리즘 기반 실시간 이동 객체 검출)

  • Nguyen, Thanh Binh;Chung, Sun-Tae
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • Moving object detection is to detect foreground object different from background scene in a new incoming image frame and is an essential ingredient process in some image processing applications such as intelligent visual surveillance, HCI, object-based video compression and etc. Most of previous object detection algorithms are still computationally heavy so that it is difficult to develop real-time multi-channel moving object detection in a workstation or even one-channel real-time moving object detection in an embedded system using them. Foreground mask correction necessary for a more precise object detection is usually accomplished using morphological operations like opening and closing. Morphological operations are not computationally cheap and moreover, they are difficult to be rendered to run simultaneously with the subsequent connected component labeling routine since they need quite different type of processing from what the connected component labeling does. In this paper, we first devise a fast and precise foreground mask correction algorithm, "Neighbor Foreground Pixel Propagation (NFPP)" which utilizes neighbor pixel checking employed in the connected component labeling. Next, we propose a novel moving object detection method based on the devised foreground mask correction algorithm, NFPP where the connected component labeling routine can be executed simultaneously with the foreground mask correction. Through experiments, it is verified that the proposed moving object detection method shows more precise object detection and more than 4 times faster processing speed for a image frame and videos in the given the experiments than the previous moving object detection method using morphological operations.