• Title/Summary/Keyword: Morison's formula

Search Result 11, Processing Time 0.02 seconds

CFD Application to Evaluation of Wave and Current Loads on Fixed Cylindrical Substructure for Ocean Wind Turbine (해상풍력발전용 고정식 원형 하부구조물에 작용하는 파랑 및 조류 하중 해석을 위한 CFD 기법의 적용)

  • Park, Yeon-Seok;Chen, Zheng-Shou;Kim, Wu-Joan
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.7-14
    • /
    • 2011
  • Numerical simulations were performed for the evaluation of wave and current loads on a fixed cylindrical substructure model for an ocean wind turbine using the ANSYS-CFX package. The numerical wave tank was actualized by specifying the velocity at the inlet and applying momentum loss as a wave damper at the end of the wave tank. The Volume-Of-Fluid (VOF) scheme was adopted to capture the air-water interface. An accuracy validation of the numerical wave tank with a truncated vertical circular cylinder was accomplished by comparing the CFD results with Morison's formula, experimental results, and potential flow solutions using the higher-order boundary element method (HOBEM). A parametric study was carried out by alternately varying the length and amplitude of the wave. As a meaningful engineering application, in the present study, three kinds of conditions were considered, i.e., cases with current, waves, and a combination of current and progressive waves, passing through a cylindrical substructure model. It was found that the CFD results showed reasonable agreement with the results of the HOBEM and Morison's formula when only progressive waves were considered. However, when a current was included, CFD gave a smaller load than Morison's formula.

Numerical Study on Wave-Induced Motion Response of Tension Leg Platform in Waves (모리슨 항력을 고려한 파랑 중 TLP 거동 특성 연구)

  • Cho, Yoon Sang;Nam, Bo Woo;Hong, Sa Young;Kim, Jin Ha;Kim, Hyun Jo
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.508-516
    • /
    • 2014
  • A numerical method to investigate the non-linear motion characteristics of a TLP is established. A time domain simulation that includes the memory effect using the convolution integral is used to consider the transient effect of TLP motion. The hydrodynamic coefficients and wave force are calculated using a potential flow model based on the HOBEM(higher order boundary element method). The viscous drag force acting on the platform and tendons is also considered by using Morison’s drag. The results of the present numerical method are compared with experimental data. The focus is the nonlinear effect due to the viscous drag force on the TLP motion. The ringing, springing, and drift motion are due to the drag force based on Morison's formula.

Development of a Program for Analyzing the Stability of Artificial Reefs - Application of a Computer Coding System - (인공어초 안정성 해석 프로그램 개발 - 컴퓨터 코딩시스템 적용)

  • Jeon, Yong-Ho;Park, Jae-Hyung;Yoon, Han-Sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.537-544
    • /
    • 2018
  • In this study, a simple, efficient, user-based program called SCAR was developed for evaluating the sliding and collapse of artificial reefs due to hydrodynamic forces in ocean environments. SCAR was developed by applying Delphi code and a Graphical User Interface (GUI) based on the Morison formula for evaluating and analyzing the stability of artificial reefs. SCAR can be applied widely for design and stability evaluation of fishery structures (such as artificial reefs or other underwater structures) in undergraduate and graduate courses and by experts in the field.

Investigation of the Design Wave Forces for Ear-Do Ocean Research Station I: Three Dimensional Hydraulic Model Tests (이어도 종합해양과학기지에 대한 설계파력의 검토 I: 삼차원 수리모형실험)

  • 전인식;심재설;최성진
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.4
    • /
    • pp.157-167
    • /
    • 2000
  • Korea Ocean Research and Development Institute performed the basic design of the Ear-Do Ocean Research Station in 1998. The design wave was taken to be the deep water wave which was obtained through wave hindcasting procedure. Wave forces acting on the structure were calculated by Morison formula utilizing the stream function theory of 5th. order. In the present study, a three dimensional hydraulic model testing was undertaken to investigate the validity of the basic design, measuring wave propagation over the Ear-Do, horizontal wave forces and air gaps. The measured forces were all compared by the corresponding values calculated by SACS program based on th design on the design wave. The results showed that in the three deep water wave directions (SSW, S, SE) the measured wave farces appeared less than the SACS calculated. But in the NNW wave direction, the measured forces generally exceeded the calculated values and showed a peculiar pattern very similar to the case that waves are superimposed by an unidirectional current. It was also found that the measured air gap underneath the structure appeared less than the values taken in the basic design for all wave directions.

  • PDF

A Review-Status of Development and Research of Artificial Reefs in the East Asian Countries- (동아시아의 인공어초 개발과 연구 현황)

  • LEE, Moon-Ock;KIM, Jong-Kyu;KIM, Byeong-Kuk
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.3
    • /
    • pp.630-644
    • /
    • 2016
  • We conducted a comprehensive review on artificial reefs (ARs) including seaweed reefs for marine afforestation in relation to their development and research from 1972 to 2016, and then systematically analyzed their current a state-of-the-art and practice. From the review, the followings conclusions are made. First, the objectives of AR projects in the Southeast Asia can be classified into three, i.e. protection and increase of fishery resources, local community's profits, and ecological tourism. Second, fish gathering effects by ARs can be determined in terms of wake region or wake length that tends to increase with the K-C (Keulegan-Carpenter) number. Third, ARs are desirable to deploy across a direction of the main flow but it is essential to keep the deployment interval two to four times the length of a single reef. Fourth, stability of ARs depends on how to evaluate drag coefficient, and Morison formula turns out to be practical. Fifth, local scours of ARs are likely to occur due to a downward flow around the center of the front surface. Finally, it is natural for ARs to positively contribute to the marine ecosystem but it is imperative to develop an evaluation method for the effects of ARs on the marine ecosystem.

Dynamic Behavior of Cylindrical Pile Subjected to Impulsive (衝擊碎波力의 작용에 의한 圓形파일의 動的擧動)

  • 전인식;심재설
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.2
    • /
    • pp.87-94
    • /
    • 1999
  • The Morison's formula has been commonly used in the determination of wave forces of sinusoidal waves acting on coastal or ocean structures of pile-supported type. In the case that plunging breakers are incident, the structures are subjected to impulsive breaking wave forces which are normally much larger than the Morison's. However, the impulsive breaking wave forces act in a very short time, and hence a dynamic structural analysis should be done to determine whether or not to include the forces in the design force items. In the present study, numerical methods for calculating the dynamic response of a vertically located cylindrical pile are developed. Static and dynamic displacements are then compared through several example analyses varying the structural properties of pile.

  • PDF

Numerical simulation of fish nets in currents using a Morison force model

  • Cifuentes, Cristian;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.7 no.2
    • /
    • pp.143-155
    • /
    • 2017
  • For complex flexible structures such as nets, the determination of drag forces and its deformation is a challenging task. The accurate prediction of loads on cages is one of the key steps in designing fish farm facilities. The basic physics with a simple cage, can be addressed by the use of experimental studies. However, to design more complex cage system for various environmental conditions, a reliable numerical simulation tool is essential. In this work, the current load on a cage is calculated using a Morison-force model applied at instantaneous positions of equivalent-net modeling. Variations of solidity ratio ($S_n$) of the net and current speed are considered. An equivalent array of cylinders is built to represent the physical netting. Based on the systematic comparisons between the published experimental data for Raschel nets and the current numerical simulations, carried out using the commercial software OrcaFlex, a new formulation for $C_d$ values, used in the equivalent-net model, is presented. The similar approach can also be applied to other netting materials following the same procedure. In case of high solidity ratio and current speed, the hybrid model defines $C_d$ as a function of Re (Reynolds number) and $S_n$ to better represent the corresponding weak diffraction effects. Otherwise, the conventional $C_d$ values depending only on Re can be used with including shielding effects for downstream elements. This new methodology significantly improves the agreement between numerical and experimental data.

Nonlinear Analysis of Dynamic Response of Jacket Type Offshore Structures (Jacket형 해양구조물(海洋構造物)의 비선형(非線形) 동적응답해석(動的應答解析))

  • Y.C.,Kim;I.S.,Nho;S.W.,Park
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.2
    • /
    • pp.33-45
    • /
    • 1986
  • In the present paper, the nonlinear analysis of dynamic response of the jacket type offshore structures subject to nonlinear fluid force is performed. Furthermore, several analysis methods, such as quasi-static analysis, Newmark-$\beta$ method and state vector time integration technique, and described and compared with each others in order to investigate the efficiency numerical of the schemes for this kind of nonlinear structural analysis. In the problem formulation, various environmental forces acting on the jacket type offshore structure have been studied and calculated. Particularly, hydrodynamic forces are calculated by using the Morison type formula, which contains the interaction effect between the motion of the structure and the velocity of fluid particles. Also, Stokes' 5th order wave theory and Airy's linear wave theory are used to predict the velocity distribution of the fluid particles. Finally, the nonlinear equation of motion of the structure is obtained by using three-dimensional finite element formulation. Based on the above procedures, two examples, i.e. a single pile and a typical offshore jacket platform, are studied in details.

  • PDF

Dynamic Response Analyses of Fixed Type Substructures for 2.5MW Class Offshore Wind Turbine

  • Song, Chang Yong;Yoo, Jaehoon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.15-24
    • /
    • 2017
  • This paper explores a series of numerical simulations of dynamic responses of multi-piles (dolphin) type substructures for 2.5MW class offshore wind turbine. Firstly computational fluid dynamics (CFD) simulation was performed to evaluate wave loads on the dolphin type substructures with the design wave condition for the west-south region of Korea. Numerical wave tank (NWT) based on CFD was adopted to generate numerically a progressive regular wave using a virtual piston type wave maker. It was found that the water-piercing area of piles of the substructure is a key parameter determining the wave load exerted in horizontal direction. In the next the dynamic structural responses of substructure members under the wave load were calculated using finite element analysis (FEA). In the FEA approach, the dynamic structural responses were able to be calculated including a deformable body effect of substructure members when wave load on each member was determined by Morison's formula. The paper numerically identifies dynamic response characteristics of dolphin type substructures for 2.5MW class offshore wind turbine.

In Situ Measurement of Breaking Wave Pressures (碎波壓의 實海域 측정)

  • 심재설;전인식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.3
    • /
    • pp.141-148
    • /
    • 1999
  • The magnitude of breaking wave forces given by plunging breakers incident on a pile structure is much greater than the forces calculated by Morison's formula, but those forces may act on pile for very short duration in the range of a few multiples of 0.01 second. Hence, a dynamic analysis for the impact forces of breaking waves may be necessary for the accurate determination of pile displacements in the first stage of design. The time series of the impact force along the pile length is thus required, which may be estimated from the pressure distribution. In the present study, breaking wave pressures are measured for a vertical pile at real field which is easily subjected to plunging breakers in stormy weather conditions. The measured data are analyzed and compared with other results to quantify the characteristics of breaking wave pressures in real fields.

  • PDF