• Title/Summary/Keyword: Mooring Equipment

Search Result 24, Processing Time 0.026 seconds

Development of the Large-Capacity Mooring Fittings according to MEG4(Mooring Equipment Guideline 4) (MEG4(Mooring Equipment Guideline 4) 적용에 따른 대용량 무어링 피팅 개발)

  • Myung-Su Yi;Kwang-Cheol Seo;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.950-957
    • /
    • 2023
  • For safe mooring and towing between the ship and port, the equipment must be designed in accordance with the relevant international regulations. However, some small shipyards and engineering companies often do not fully comprehend the core contents. Therefore, the international regulations regarding towing and mooring equipment are reviewed and the bollard and chock are newly developed based on the Mooring Equipment Guideline 4 (MEG4) standards. A bollard is a mooring equipment used to fix a mooring rope to the hull. It has two columns and is mostly used in a figure eight pattern knots under the mooring condition. The chock, which is used to change the mooring rope direction coming into the ship from outside, is manufactured using a casting with curvature. The two mooring equipment are widely used in the stern, bow, and mid-side. Owing to the increase in the size of container vessels and LNG ships, the mooring rope load has increased and the safe working load of the mooring equipment must be revised. This study summarizes and examines the results of the allowable stress method obtained using finite element analysis modelling. To consider the mesh size effect, a reasonable criteria was suggested by referring the existing class guidance. Additionally, the safe working load was verified through nonlinear collapse analysis, and the elastic region against load increments was confirmed. Furthermore, the proposed evaluation method can be used to develop similar equipment in the near future.

Calculating the Mooring Force of a Large LNG Ship based on OCIMF Mooring Equipment Guidelines (OCIMF 계류설비지침 기반 대형 LNG선박 계류력 계산)

  • Wang, Jian;Noh, Jackyou
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.594-600
    • /
    • 2022
  • When a large liquefied natural gas (LNG) carrier is anchored at a coastal terminal, calculations on mooring forces of mooring cables induced by environmental loads such as strong winds and currents are needed to secure mooring safety. The advantages and disadvantages of several existing mooring force calculation methods are compared and analyzed with their application conditions. Resultingly, mooring equipment guidelines of the Oil Companies International Marine Forum (OCIMF) are chosen as the computational method for this study. In this paper, the mooring forces of a large LNG carrier with spectrum was calculated using the OCIMF mooring equipment guidelines. The calculation shows similar maximum forces resulted from the calculation using experiment data of a wind tunnel test. To verify the results, OPTIMOOR, a dedicated mooring force calculation software, is used to calculate the same mooring conditions. The results of both calculations show that the computational method recommended by OCIMF is safe and reliable. OPTIMOOR calculates more detailed tensile force of each mooring cable. Thus, the calculation on mooring forces of mooring cables of a large LNG carrier using OCIMF mooring equipment guidelines is verified as an applicable and safe method.

Conceptual Design for Mooring Stability System and Equipments of Mobile Harbor (모바일하버 선박의 계류안정화시스템 및 의장장치 개념설계)

  • Lee, Yun-Sok;Jeong, Tae-Gwon;Jung, Chang-Hyun;Kim, Se-Won
    • Journal of Navigation and Port Research
    • /
    • v.34 no.5
    • /
    • pp.311-317
    • /
    • 2010
  • Mobile Harbor(MH) is a new paradigm for maritime transport system introduced in Korea, the target of which is to carry out ship-to-ship cargo operation rapidly and effectively even under a condition of sea state 3. A MH ship is moored alongside a large container vessel anchored at the defined anchorage and also equipped with gantry cranes for handling containers. The MH study concerned includes rapid container handling system, optimum design for floating structure, hybrid berthing & cargo operation system, design for cargo handling crane, etc. This paper is to deal with a conceptual design of a stabilized mooring system and mooring equipment under a condition of ship-to-ship mooring. In this connection, we suggest a positioning control winch system in order to control heave motions of the MH ship which is to add constant brakepower and stabilized function to an auto-tension winch and mooring equipment used currently in large container ships.

Verification of Equipment Number Equation Considering New Types of Ships (선종 변화를 고려한 의장수 계산식의 적합성 검증)

  • Ku, Namkug;Ha, Sol;Lee, Kyu-Yeul;Yang, Jin-Hyeck;Bae, Jae-Ryu;Lee, Soo-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.119-124
    • /
    • 2015
  • The purpose of this research is a verification of the current equation for calculating equipment number and a suggesting a method for development of a rational new equation. The equation for calculating equipment number consists of total surface area of a ship that fluid resistance act on. Equipment number determines the specification of anchoring and mooring equipment such as anchor weight, anchor chains length and diameter, the number, length and breaking load of tow lines and mooring lines. The equation for equipment number calculation is basically derived considering x, y components of a wind and current force acting on a ship. But this equation is only based on a tanker, which was main type of ships when the equation was derived. Therefore, verification of the equation is required for other types of ships, such as container carrier, LNG carrier, etc. Therefore, in this research, we find out the equation for equipment number calculation should be revised for other types of ships especially the container carrier, by comparing wind and current force acting on a ship to holding force of an anchor and anchor chains, which are selected based on the equipment number.

Proposition of Automatic Ship Mooring Using Hydraulic Winch (유압 윈치를 이용한 선박 자동 계선법)

  • Hur, J.G.;Yang, K.U.
    • Journal of Drive and Control
    • /
    • v.10 no.4
    • /
    • pp.14-21
    • /
    • 2013
  • The numerical analysis of the automatic ship mooring system which was equipped in the ship for trying to berth at the pier was performed in this study. The automatic ship mooring using hydraulic winch was a new method that had not need to change the existing devices and to help a pilot ship of outside. The numerical results of the proposed mooring system including ship motion were that the speed and rolling phenomenon of ship was affected by changing in the ship weight and affected the slope maintenance and yaw degree of ship if there has a trim of stern. Also, a static force of ship at the initial movement was important to calculate the mooring power. The moving force and inertial force of ship on the vertical direction was confirmed for the mooring stability. Therefore, the power and velocity of hydraulic mooring winch should be determined by considering the significant characteristics such as weight, velocity, inertial force and moving force of ship.

Quay Mooring Analysis (안벽계류해석)

  • Tae-Myoung,Oh;Deuk-Joon,Yum
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.47-55
    • /
    • 1990
  • This paper presents the quasi-static mooring analysis model for a vessel moored at the quay. The results of this analysis will aid the designer in determining the mooring configuration for the surface vessels subjected to wind, current and wave forces. And it will also help him in selecting the equipment for the fixed mooring system. The cumulative elastic behavior of the mooring lines invokes a complicated nonlinear problem since the mooring lines are relatively short and hang in air as noncoplanar configurations. This nonlinear mooring problem is solved in this paper by the load increment technique in which the external load is increased step by step taking all sources of nonlinearity into account.

  • PDF

Improvements for Successful Mooring of Ocean Buoys (성공적인 해양부이 계류를 위한 개선 방안)

  • Jung, Dawoon;Park, Joonseong;Song, Kyu-Min
    • Ocean and Polar Research
    • /
    • v.43 no.3
    • /
    • pp.193-203
    • /
    • 2021
  • In-situ experiment using ocean buoys is a direct ocean observation and has been playing an important role from the past to the present based on high reliability. The ocean buoy is operated more stable than before due to the technological development of communication (GPS, satellite, …) and equipment, but still moored buoys are not free from various accidents occurring in the ocean. Nevertheless, there is currently a lack of countermeasures or manuals about mooring accidents. Therefore, in this study, based on the experience of operating buoys conducted for many years, the advantages and disadvantages of ocean buoys according to size were analyzed. and legal procedures before and after buoy mooring were presented to enhance the use of buoys. And it is suggested to realize successful experiment by proposing considerations before mooring the buoy in preparation for an accident.

A Study on Determining the Priority of Supervising Mooring Line while 125K LNG Moss Type Discharging at Pyeong Taek Gas Terminal

  • Kim, Jong Sung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.278-286
    • /
    • 2019
  • The Port of Pyeong Taek is located on the west coast, meaning that the difference between the rise and fall of tide is great (flood tide 1.8 to 2.9 knots, ebb tide 1.6 to 2.9 knots). Due to mainly N~NW'ly strong winds & high waves during winter, navigating as well as loading & discharging vessels must focus on cargo handling. The strong tidal and wind forces in the Port of Pyeong Taek can push an LNG carrier away from its berth, which will end up causing forced disconnection between the vessel's cargo line and shore-side loading arm. The primary consequence of this disconnection will be LNG leakage, which will lead to tremendous physical damage to the hull and shore-side equipment. In this study, the 125K LNG Moss Type ship docked at No. 1 Pier of the Pyeong Taek is observed, and the tension of the mooring line during cargo handling is calculated using a combination of wind and waves to determine effective mooring line and mooring line priority management. As a result if the wind direction is $90^{\circ}$ to the left and right of the bow, it was found that line monitoring should be performed bearing special attention to the Fore Spring Line, Fore Breast Line, and Aft Spring Line.

The Technique of Installing Floating Photovoltaic Systems (수상태양광의 시공기술에 관한 실증연구)

  • Choi, Young-Kwan;Yi, Jong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4447-4454
    • /
    • 2013
  • In October 2011, a commercialized 100kW class floating photovoltaic system positive plant was installed at Hapcheon dam a multi-purpose reservoir the first time ever in the nation. Floating photovoltaic system differs in water float, mooring device and underwater cable process from land photovoltaic system. As for land and building photovoltaic power generation equipments, many installation cases and skilled experiences are available, and thus installation is not difficult. However, commercial power generation floating photovoltaic system, which is attempted for the first time in the nation, requires to be designed and installed through a series of processes like technical review and verification of data by process in comparison with similar cases. The structure of floating photovoltaic system, an equipment for float photovoltaic module and other electrical equipment, is required to withstand weather environments like wind or typhoon etc and yet not affect water quality negatively, and for implementation of this system, construction efficiency and economy etc should be considered comprehensively. In this paper, the techniques of installing floating photovoltaic structure, mooring device, underwater cable, electrical equipment and remote monitoring control system are explained. The 100kW floating PV system is operating with 15% average capacity factor.