• Title/Summary/Keyword: Monthly forecasting

Search Result 185, Processing Time 0.023 seconds

SUNSPOT AREA PREDICTION BASED ON COMPLEMENTARY ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND EXTREME LEARNING MACHINE

  • Peng, Lingling
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.6
    • /
    • pp.139-147
    • /
    • 2020
  • The sunspot area is a critical physical quantity for assessing the solar activity level; forecasts of the sunspot area are of great importance for studies of the solar activity and space weather. We developed an innovative hybrid model prediction method by integrating the complementary ensemble empirical mode decomposition (CEEMD) and extreme learning machine (ELM). The time series is first decomposed into intrinsic mode functions (IMFs) with different frequencies by CEEMD; these IMFs can be divided into three groups, a high-frequency group, a low-frequency group, and a trend group. The ELM forecasting models are established to forecast the three groups separately. The final forecast results are obtained by summing up the forecast values of each group. The proposed hybrid model is applied to the smoothed monthly mean sunspot area archived at NASA's Marshall Space Flight Center (MSFC). We find a mean absolute percentage error (MAPE) and a root mean square error (RMSE) of 1.80% and 9.75, respectively, which indicates that: (1) for the CEEMD-ELM model, the predicted sunspot area is in good agreement with the observed one; (2) the proposed model outperforms previous approaches in terms of prediction accuracy and operational efficiency.

Geographical Characteristics of PM2.5, PM10 and O3 Concentrations Measured at the Air Quality Monitoring Systems in the Seoul Metropolitan Area (수도권 지역 도시대기측정소 PM2.5, PM10, O3 농도의 지리적 분포 특성)

  • Kang, Jung-Eun;Mun, Da-Som;Kim, Jae-Jin;Choi, Jin-Young;Lee, Jae-Bum;Lee, Dae-Gyun
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.657-664
    • /
    • 2021
  • In this study, we investigated the relationships between the air quality (PM2.5, PM10, O3) concentrations and local geographical characteristics (terrain heights, building area ratios, population density in 9 km × 9 km gridded subareas) in the Seoul metropolitan area. To analyze the terrain heights and building area ratios, we used the geographic information system data provided by the NGII (National Geographic Information Institute). Also, we used the administrative districts and population provided by KOSIS (Korean Statistical Information Service) to estimate population densities. We analyzed the PM2.5, PM10, and O3 concentrations measured at the 146 AQMSs (air quality monitoring system) within the Seoul metropolitan area. The analysis period is from January 2010 to December 2020, and the monthly concentrations were calculated by averaging the hourly concentrations. The terrain is high in the northern and eastern parts of Gyeonggi-do and low near the west coastline. The distributions of building area ratios and population densities were similar to each other. During the analysis period, the monthly PM2.5 and PM10 concentrations at 146 AQMSs were high from January to March. The O3 concentrations were high from April to June. The population densities were negatively correlated with PM2.5, PM10, and O3 concentrations (weakly with PM2.5 and PM10 but strongly with O3). On the other hand, the AQMS heights showed no significant correlation with the pollutant concentrations, implying that further studies on the relationship between terrain heights and pollutant concentrations should be accompanied.

Use of Climate Information for Improving Extended Streamflow Prediction in Korea (중장기 유량예측 향상을 위한 국내 기후정보의 이용)

  • Lee Jae-Kyoung;Kim Young-Oh;Jeong Dae-Il
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.9 s.170
    • /
    • pp.755-766
    • /
    • 2006
  • Since the accuracy of climate forecast information has improved from better understanding of the climatic system, particularly, from the better understanding of ENSO and the improvement in meteorological models, the forecasted climate information is becoming the important clue for streamflow prediction. This study investigated the available climate forecast information to improve the extended streamflow prediction in Korea, such as MIMI(Monthly Industrial Meteorological Information) and GDAPS(Global Data Assimilation and Prediction) and measured their accuracies. Both MIMI and the 10-day forecast of GDAPS were superior to a naive forecasts and peformed better for the flood season than for the dry season, thus it was proved that such climate forecasts would be valuable for the flood season. This study then forecasted the monthly inflows to Chungju Dam by using MIMI and GDAPS. For MIMI, we compared three cases: All, Intersection, Union. The accuracies of all three cases are better than the naive forecast and especially, Extended Streamflow Predictions(ESPs) with the Intersection and with Union scenarios were superior to that with the All scenarios for the flood season. For GDAPS, the 10-day ahead streamflow prediction also has the better accuracy for the flood season than for the dry season. Therefore, this study proved that using the climate information such as MIMI and GDAPS to reduce the meteorologic uncertainty can improve the accuracy of the extended streamflow prediction for the flood season.

Seasonal Relationship between El Nino-Southern Oscillation and Hydrologic Variables in Korea (ENSO와 한국의 수문변량들간의 계절적 관계 분석)

  • Chu, Hyun-Jae;Kim, Tae-Woong;Lee, Jong-Kyu;Lee, Jae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.4
    • /
    • pp.299-311
    • /
    • 2007
  • Climatic abnormal phenomena involving El Nino and La Nina have been frequently reported in recent decades. The interannual climate variability represented by El Nino-Southern Oscillation (ENSO) is sometimes investigated to account for the climatic abnormal phenomena around the world. Although many hydroclimatologists have studied the impact of ENSO on regional precipitation and streamflow, however, there are still many difficulties in finding the dominant causal relationship between them. This relationship is very useful in making hydrological forecasting models for water resources management. In this study, the seasonal relationships between ENSO and hydrologic variables were investigated in Korea. As an ENSO indicator, Southern Oscillation Index (SOI) was used. Monthly precipitation, monthly mean temperature, and monthly dam inflow data were used after being transformed to the standardized normal index. Seasonal relationships between ENSO and hydrologic variables were investigated based on the exceedance probability and distribution of hydrologic variables conditioned on the ENSO episode. The results from the analysis of this study showed that the warm ENSO episode affects increases in precipitation and temperature, and the cold ENSO episode is related with decreases in precipitation and temperature in Korea. However, in some regions, the local relationships do not correspond with the general seasonal relationship.

Verification of the Validity of WRF Model for Wind Resource Assessment in Wind Farm Pre-feasibility Studies (풍력단지개발 예비타당성 평가를 위한 모델의 WRF 풍황자원 예측 정확도 검증)

  • Her, Sooyoung;Kim, Bum Suk;Huh, Jong Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.735-742
    • /
    • 2015
  • In this paper, we compare and verify the prediction accuracy and feasibility for wind resources on a wind farm using the Weather Research and Forecasting (WRF) model, which is a numerical weather-prediction model. This model is not only able to simulate local weather phenomena, but also does not require automatic weather station (AWS), satellite, or meteorological mast data. To verify the feasibility of WRF to predict the wind resources required from a wind farm pre-feasibility study, we compare and verify measured wind data and the results predicted by WAsP. To do this, we use the Pyeongdae and Udo sites, which are located on the northeastern part of Jeju island. Together with the measured data, we use the results of annual and monthly mean wind speed, the Weibull distribution, the annual energy production (AEP), and a wind rose. The WRF results are shown to have a higher accuracy than the WAsP results. We therefore confirmed that WRF wind resources can be used in wind farm pre-feasibility studies.

Classification of Agro-climatic zones in Northeast District of China (중국 동북지역의 농업기후지대 구분)

  • Jung, Myung-Pyo;Hur, Jina;Park, Hye-Jin;Shim, Kyo-Moon;Ahn, Joong-Bae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.102-107
    • /
    • 2015
  • This study was conducted to classify agro-climatic zones in Northeast district of China. For agro-climatic zoning, monthly mean temperature and precipitation data from Global Modeling and Assimilation Office (GMAO) of National Aeronautics and Space Administration (NASA, USA) between 1979 and 2010 (http://disc.sci.gsfc.nasa.gov/) were collected. Altitude and vegetation fraction of East Asia from Weather Research and Forecasting (WRF) were also used to classify them. The criteria of agro-climatic classification were altitude (200 m, between 200-800 m, 800 m), vegetation fraction (60%), annual mean temperature ($0^{\circ}C$), temperature in the hottest month ($22^{\circ}C$), and annual precipitation (700 mm). In Northeast district of China, mean annual temperature, annual precipitation, and solar radiation were $3.4^{\circ}C$, 613.2 mm, and $4,414.2MJ/m^2$ between 2009 and 2013, respectively. Twenty-two agro-climatic zones identified in Northeast district of China by metrics classification method, from which the map of agro-climatic zones for Northeast district of China was derived. The results could be useful as information for estimating agro-meteorological characteristics and predicting crop development and crop yield of Northeast district of China as well as those of North Korea.

Study on the Forecasting and Relationship of Busan Cargo by ARIMA and VAR·VEC (ARIMA와 VAR·VEC 모형에 의한 부산항 물동량 예측과 관련성연구)

  • Lee, Sung-Yhun;Ahn, Ki-Myung
    • Journal of Navigation and Port Research
    • /
    • v.44 no.1
    • /
    • pp.44-52
    • /
    • 2020
  • More accurate forecasting of port cargo in the global long-term recession is critical for the implementation of port policy. In this study, the Busan Port container volume (export cargo and transshipment cargo) was estimated using the Vector Autoregressive (VAR) model and the vector error correction (VEC) model considering the causal relationship between the economic scale (GDP) of Korea, China, and the U.S. as well as ARIMA, a single volume model. The measurement data was the monthly volume of container shipments at the Busan port J anuary 2014-August 2019. According to the analysis, the time series of import and export volume was estimated by VAR because it was relatively stable, and transshipment cargo was non-stationary, but it has cointegration relationship (long-term equilibrium) with economic scale, interest rate, and economic fluctuation, so estimated by the VEC model. The estimation results show that ARIMA is superior in the stationary time-series data (local cargo) and transshipment cargo with a trend are more predictable in estimating by the multivariate model, the VEC model. Import-export cargo, in particular, is closely related to the size of our country's economy, and transshipment cargo is closely related to the size of the Chinese and American economies. It also suggests a strategy to increase transshipment cargo as the size of China's economy appears to be closer than that of the U.S.

Trend and Forecast of the Medical Care Utilization Rate, the Medical Expense per Case and the Treatment Days per Cage in Medical Insurance Program for Employees by ARIMA Model (ARIMA모델에 의한 피용자(被傭者) 의료보험(醫療保險) 수진율(受診率), 건당진료비(件當診療費) 및 건당진료일수(件當診療日數)의 추이(推移)와 예측(豫測))

  • Jang, Kyu-Pyo;Kam, Sin;Park, Jae-Yong
    • Journal of Preventive Medicine and Public Health
    • /
    • v.24 no.3 s.35
    • /
    • pp.441-458
    • /
    • 1991
  • The objective of this study was to provide basic reference data for stabilization scheme of medical insurance benefits through forecasting of the medical care utilization rate, the medical expence per case, and the treatment days per case in medical insurance program for government employees & private school teachers and for industrial workers. For the achievement of above objective, this study was carried out by Box-Jenkins time series analysis (ARIMA Model), using monthly statistical data from Jan. 1979 to Dec. 1989, of medical insurance program for government employees & private school teachers and for industrial workers. The results are as follows ; ARIMA model of the medical care utilization rate in medical insurance program for government employees & private school teachers was ARIMA (1, 1, 1) and it for outpatient in medical insurance program for industrial workers was ARIMA (1, 1, 1), while it for inpatient in medical insurance program for industrial workers was ARIMA (1, 0, 1). ARIMA model of the medical expense per case in medical insurance program for government employees & private school teachers and for outpatient in medical insurance program for industrial workers were ARIMA (1, 1, 0), while it for inpatient in medical insurance program for industrial workers was ARIMA (1, 0, 1). ARIMA model of the treatment days per case of both medical insurance program for government employees & private school teachers and industrial workers were ARIMA (1, 1, 1). Forecasting value of the medical care utilzation rate for inpatient in medical insurance program for government employees & private school teachers was 0.0061 at dec. 1989, 0.0066 at dec. 1994 and it for outpatient was 0.280 at dec. 1989, 0.294 at dec. 1994, while it for inpatient in medical insurance program for industrial workers was 0.0052 at dec. 1989, 0.0056 at dec. 1994 and it for outpatient was 0.203 at dec. 1989, 0.215 at 1994. Forecasting value of the medical expense per case for inpatient in medical insurance program for government employees & private school teachers was 332,751 at dec. 1989, 354,511 at dec. 1994 and it for outpatient was 11,925 at dec. 1989, 12,904 at dec. 1994, while it for inpatient in medical insurance program for industrial workers was 281,835 at dec. 1989, 293,973 at dec. 1994 and it for outpatient was 11,599 at dec. 1989, 11,585 at 1994. Forecasting value of the treatment days per case for inpatient in medical insurance program for government employees & private school teachers was 13.79 at dec. 1989,13.85 at an. 1994 and in for outpatient was 5.03 at dec. 1989, 5.00 at dec. 1994, while it for inpatient in medical insurance program for industrial workers was 12.23 at dec. 1989, 12.85 at dec. 1994 and it for outpatient was 4.61 at dec. 1989, 4.60 at 1994.

  • PDF

Evaluation of improvement effect on the spatial-temporal correction of several reference evapotranspiration methods (기준증발산량 산정방법들의 시공간적 보정에 대한 개선효과 평가)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.701-715
    • /
    • 2020
  • This study compared several reference evapotranspiration estimated using eight methods such as FAO-56 Penman-Monteith (FAO PM), Hamon, Hansen, Hargreaves-Samani, Jensen-Haise, Makkink, Priestley-Taylor, and Thornthwaite. In addition, by analyzing the monthly deviations of the results by the FAO PM and the remaining seven methods, monthly optimized correction coefficients were derived and the improvement effect was evaluated. These methods were applied to 73 automated synoptic observation system (ASOS) stations of the Korea Meteorological Administration, where the climatological data are available at least 20 years. As a result of evaluating the reference evapotranspiration by applying the default coefficients of each method, a large fluctuation happened depending on the method, and the Hansen method was relatively similar to FAO PM. However, the Hamon and Jensen-Haise methods showed more large values than other methods in summer, and the deviation from FAO PM method was also large significantly. When comparing based on the region, the comparison with FAO PM method provided that the reference evapotranspiration estimated by other methods was overestimated in most regions except for eastern coastal areas. Based on the deviation from the FAO PM method, the monthly correction coefficients were derived for each station. The monthly deviation average that ranged from -46 mm to +88 mm before correction was improved to -11 mm to +1 mm after correction, and the annual average deviation was also significantly reduced by correction from -393 mm to +354 mm (before correction) to -33 mm to +9 mm (after correction). In particular, Hamon, Hargreaves-Samani, and Thornthwaite methods using only temperature data also produced results that were not significantly different from FAO PM after correction. It can be also useful for forecasting long-term reference evapotranspiration using temperature data in climate change scenarios or predicting evapotranspiration using monthly or seasonal temperature forecasted values.

A Model for Groundwater Time-series from the Well Field of Riverbank Filtration (강변여과 취수정 주변 지하수위를 위한 시계열 모형)

  • Lee, Sang-Il;Lee, Sang-Ki;Hamm, Se-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.8
    • /
    • pp.673-680
    • /
    • 2009
  • Alternatives to conventional water resources are being sought due to the scarcity and the poor quality of surface water. Riverbank filtration (RBF) is one of them and considered as a promising source of water supply in some cities. Changwon City has started RBF in 2001 and field data have been accumulated. This study is to develop a time-series model for groundwater level data collected from the pumping area of RBF. The site is Daesan-myeon, Changwon City, where groundwater level data have been measured for the last five years (Jan. 2003$\sim$Dec. 2007). Minute-based groundwater levels was averaged out to monthly data to see the long-term behavior. Time-series analysis was conducted according to the Box-Jenkins method. The resulted model turned out to be a seasonal ARIMA model, and its forecasting performance was satisfactory. We believe this study will provide a prototype for other riverbank filtration sites where the predictability of groundwater level is essential for the reliable supply of water.