• Title/Summary/Keyword: Monte-Carlo simulation

Search Result 2,864, Processing Time 0.034 seconds

Evaluation of Attenuation Rate Error on Skin Dosimeter using Monte Carlo Simulation in Photon and Electron Beam Therapy (광자선 및 전자선 치료에서 피부선량계의 측정과 시뮬레이션을 이용한 감약률 오차 평가)

  • Han, Moo-Jae;Yang, Seung-Woo;Heo, Seung-Uk;Bae, Sang-Il;Moon, Young-Min;Park, Sung-Kwang;Kim, Jin-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.841-848
    • /
    • 2020
  • In the field of radiation therapy using photon beams and electron beams, since each patient has a different sensitivity to radiation, skin side effects may occur even at the same dose. Therefore, if there is a risk of excessive dose to the skin, a dosimeter is attached to verify whether the correct dose is being investigated. However, since the skin dosimeter checks the attachment site visually by measuring a point dose, it is difficult to confirm an accurate dose distribution. As a result, the measurement and simulation errors of the material HgI2 in the 6 MV photon beam were 3.73% and 5.24%, respectively, at the minimum thickness of 25 ㎛, and the material PbI2 was 4.73% and 5.65%, respectively. On the other hand, as a result of the 6 MeV electron beam, the measurement and simulation errors of the material HgI2 were 1.35% and 1.12%, respectively, at a minimum thickness of 25 ㎛, and the material PbI2 showed relatively low attenuation error, 1.67% and 1.20%, respectively. Therefore, it was evaluated that the thickness of the photon beam within 25 ㎛ and the electron beam within 100 ㎛ is suitable to have a reduction rate error within 5%. This study presents a new research direction for a flexible dosimeter attached to the human body that is required in clinical practice and the construction conditions of a future skin dosimeter.

Investigation of Scatter and Septal Penetration in I-131 Imaging Using GATE Simulation (GATE 시뮬레이션을 이용한 I-131 영상의 산란 및 격벽통과 보정방법 연구)

  • Jung, Ji-Young;Kim, Hee-Joung;Yu, A-Ram;Cho, Hyo-Min;Lee, Chang-Lae;Park, Hye-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.72-79
    • /
    • 2009
  • Scatter correction for I-131 plays a very important role to improve image quality and quantitation. I-131 has multiple and higher energy gamma-ray emissions. Image quality and quantitative accuracy in I-131 imaging are degraded by object scatter as well as scatter and septal penetration in the collimator. The purpose of this study was to estimate scatter and septal penetration and investigate two scatter correction methods using Monte Carlo simulation. The gamma camera system simulated in this study was a FORTE system (Phillips, Nederland) with high energy, general-purpose, parallel hole collimator. We simulated for two types of high energy collimators. One is composed of lead, and the other is composed of artificially high Z number and high density. We simulated energy spectrum using a point source in air. We estimated both full width at half maximum (FWHM) and full width at tenth maximum (FWTM) using line spread function (LSF) in cylindrical water phantom. We applied two scatter correction methods, triple energy window scatter correction (TEW) and extended triple energy window scatter correction (ETEW). The TEW method is a pixel-by pixel based correction which is easy to implement clinically. The ETEW is a modification of the TEW which corrects for scatter by using abutted scatter rejection window, which can overestimate or the underestimate scatter. The both FWHM and FWTM were estimated as 41.2 mm and 206.5 mm for lead collimator, respectively. The FWHM and FWTM were estimated as 27.3 mm and 45.6 mm for artificially high Z and high density collimator, respectively. ETEW showed that the estimation of scatter components was close to the true scatter components. In conclusion, correction for septal penetration and scatter is important to improve image quality and quantitative accuracy in I-131 imaging. The ETEW method in scatter correction appeared to be useful in I-131 imaging.

  • PDF

Fate Analysis and Impact Assessment for Vehicle Polycyclic Aromatic Hydrocarbons (PAHs) Emitted from Metropolitan City Using Multimedia Fugacity Model (다매체거동모델을 이용한 대도시 자동차 배출 Polycyclic Aromatic Hydrocarbons (PAHs) 거동 해석 및 영향평가)

  • Rhee, Gahee;Hwangbo, Soonho;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.479-495
    • /
    • 2018
  • This study was carried out to research the multimedia fate modeling, concentration distribution and impact assessment of polycyclic aromatic hydrocarbons (PAHs) emitted from automobiles, which are known as carcinogenic and mutation chemicals. The amount of emissions of PAHs was determined based on the census data of automobiles at a target S-city and emission factors of PAHs, where multimedia fugacity modeling was conducted by the restriction of PAHs transfer between air-soil at the impervious area. PAHs' Concentrations and their distributions at several environmental media were predicted by multimedia fugacity model (level III). The residual amounts and the distributions of PAHs through mass transfer of PAHs between environment media were used to assess the health risk of PAHs at unsteady state (level IV), where the sensitivity analyses of the model parameter of each variable were conducted based on Monte Carlo simulation. The experimental result at S-city showed that Fluoranthene among PAHs substances are the highest residual concentrations (60%, 53%, 32% and 34%) at all mediums (atmospheric, water, soil, sediment), respectively, where most of the PAHs were highly accumulated in the sediment media (more than 80%). A result of PAHs concentration changes in S-city over the past 34 years identified that PAHs emissions from all environmental media increased from 1983 to 2005 and decreased until 2016, where the emission of heavy-duty vehicle including truck revealed the largest contribution to the automotive emissions of PAHs at all environment media. The PAHs concentrations in soil and water for the last 34 years showed the less value than the legal standards of PAHs, but the PAHs in air exceeded the air quality standards from 1996 to 2016. The result of this study is expected to contribute the effective management and monitoring of toxic chemicals of PAHs at various environment media of Metropolitan city.

Evaluation of Radiation Dose for Dual Energy CBCT Using Multi-Grid Device (에너지 변조 필터를 이용한 이중 에너지 콘빔 CT의 선량 평가)

  • Ju, Eun Bin;Ahn, So Hyun;Cho, Sam Ju;Keum, Ki Chang;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.27 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • The paper discusses radiation dose of dual energy CT on which copper modulation layer, is mounted in order to improve diagnostic performance of the dual energy CT. The radiation dose is estimated using MCNPX and its results are compared with that of the conventional dual energy CT system. CT X-ray spectra of 80 and 120 kVp, which are usually used for thorax, abdominal, head, and neck CT scans, were generated by the SPEC78 code and were used for the source specification 'SDEF' card for MCNPX dose modeling. The copper modulation layer was located 20 cm away from a source covering half of the X-ray window. The radiation dose was measured as changing its thickness from 0.5 to 2.0 mm at intervals of 0.5 mm. Since the MCNPX tally provides only normalized values to a single particle, the dose conversion coefficients of F6 tally for the modulation layer-based dual energy CBCT should be calculated for matching the modeling results into the actual dose. The dose conversion coefficient is $7.2*10^4cGy/output$ that is obtained from dose calibration curve between F6 tally and experimental results in which GAFCHORMIC EBT3 films were exposed by an already known source. Consequently, the dose of the modulation layer-based dual energy cone beam CT is 33~40% less than that of the single energy CT system. On the basis of the results, it is considered that scattered dose produced by the copper modulation layer is very small. It shows that the modulation layer-based dual energy CBCT system can effectively reduce radiation dose, which is the major disadvantage of established dual energy CT.

Dosimetric Influence of Implanted Gold Markers in Proton Therapy for Prostate Cancer (전립선암에 대한 양성자치료에서 금마커에 의한 방사선 선량분포의 영향)

  • Kwak, Jung-Won;Shin, Jung-Wook;Kim, Jin-Sung;Park, Sung-Yong;Shin, Dong-Ho;Yoon, Myong-Geun;Park, So-Ah;Kim, Dong-Wook;Lim, Young-Gyeung;Lee, Se-Byeong
    • Progress in Medical Physics
    • /
    • v.21 no.3
    • /
    • pp.291-297
    • /
    • 2010
  • This study examined the dosimetric influence of implanted gold markers in proton therapy and the effects of their positions in the spread-out Bragg peak (SOBP) proton beam. The implanted cylindrical gold markers were 3 mm long and 1.2 mm in diameter. The dosimetric influence of the gold markers was determined with markers at various locations in a proton-beam field. Spatial dose distributions were measured using a three-dimensional moving water phantom and a stereotactic diode detector with an effective diameter of 0.5 mm. Also, a film dosimetry was performed using Gafchromic External Beam Treatment (EBT) film. The GEANT4 simulation toolkit was used for Monte-Carlo simulations to confirm the measurements and to construct the dose-volume histogram with implanting markers. Motion data were obtained from the portal images of 10 patients to investigate the effect of organ motions on the dosimetric influence of markers in the presence of a rectal balloon. The underdosed volume due to a single gold marker, in which the dose was less than 95% of a prescribed amount, was 0.15 cc. The underdosed volume due to the presence of a gold marker is much smaller than the target volume. However, the underdosed volume is inside the gross tumor volume and is not smeared out due to translational prostate motions. The positions of gold markers and the conditions of the proton-beam field give different impacts on the dose distribution of a target with implanted gold markers, and should be considered in all clinical proton-based therapies.

A Study on Developing a Model for Cancer Damage Cost Due to Risk from Benzene in Ulsan Metropolitan City (울산 지역에서 대기중 벤젠으로 인한 암 사망 손실비용 추정 모형에 관한 연구)

  • Lee, Yong-Jin;Kim, Ye-Shin;Shin, Dong-Chun;Shin, Young-Chul
    • Environmental and Resource Economics Review
    • /
    • v.13 no.1
    • /
    • pp.49-82
    • /
    • 2004
  • The study aimed to evaluate cancer damage cost due to risk from benzene inhalation. We performed health risk assessment based on US EPA guideline to estimate annual population risk in Ulsan metropolitan city. Also, we estimated a willingness-to-pay amount for reducing a cancer mortality rate to evaluate a value of statistical life. We combined the annual population risk and the value of statistical life to calculate the cancer damage cost. In the health risk assessment, we applied the benzene unit risk ($2.2{\times}10^{-6}{\sim}7.8{\times}10^{-6}$) in the US EPA'S Integrated Risk Information System to assess the annual population risk. Average concentration of benzene in ambient air is $7.88{\mu}g/m^3$(min: 1.16~max: $23.32{\mu}g/m^3$). We targeted an exposure population of 516,641 persons who aged over 30 years old. Using a Monte-Carlo simulation for uncertainty analysis, we evaluated that the population risk of benzene during ten years in Ulsan city is 2.90 persons (5 percentile: 0.32~95 percentile: 9.11persons). And the monthly average WTP for 5/1,000 cancer mortality reduction during ten years is 14,852 Won(95% C.I: 13,135~16,794 Won) and the implied VSL is 36 million Won(95% C.I: 30~40 million Won). Cancer damage cost due to risk from benzene inhalation during 10 years in Ulsan city is about 104 million Won(5 percentile: 13~95 percentile: 328 million Won). Health benefit cost to reduce a cancer mortality risk of benzene is about 50 million Won is Ulsan metropolitann city. But, it is very important that this cost is not for all health damage cost of cancer mortality in some area. We just recommended a model for evaluating a cancer risk reduction, so we must re-evaluate an integrated application of total VOCs damage cost including benzene.

  • PDF

Probabilistic Exposure Assessment of Pesticide Residues in Agricultural Products in Gyeonggi-do (경기도내 유통 농산물 중 잔류농약의 확률론적 노출평가 연구)

  • Do, Young-Sook;Kim, Jung-Boem;Kang, Suk-Ho;Kim, Nan-Young;Eom, Mi-Na;Yoon, Mi-Hye
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.2
    • /
    • pp.117-125
    • /
    • 2013
  • A probabilistic exposure assessment was performed on the monitoring data of pesticides were assessed in agricultural products in Gyeonggi-do from 2006 to 2010. Chlorothalonil, chlorpyrifos, dicofol, endosulfan, EPN, ethoprophos, fenitrothion, methidathion, phenthoate and tebupirimfos were assessed. For this assessment, we used Monte Carlo simulation software and the distribution of concentration and intake were assumed to lognormal distribution by inputting mean and standard deviation. The hazard index (HI, %ADI) of average value and the $95^{th}$ percentile based on a probabilistic method were usually lower than those by a deterministic one. For the whole population, when non-detects data were assigned 0 mg/kg, HI of the average value and the $95^{th}$ percentile showed 0.05~0.70% and 0.11~1.94%, respectively. When nondetects data were assigned 0.005 mg/kg, HI of the average value and the $95^{th}$ percentile were 0.41~4.42% and 0.98~13.81%. For only consumers, when non-detects data were assigned 0 mg/kg, HI of the average value and the $95^{th}$ percentile were 1.24~10.16% and 3.72~33.81%, respectively. When non-detects data were assigned 0.005 mg/kg, HI of the average value and the $95^{th}$ percentile were 3.43~18.26% and 9.45~54.99%, respectively. Methidathion had highest values when both of 0 and 0.005 were assigned to non-detecs data for consumers only. This study showed that agricultural products in Gyeonggi-do were safe because they had less than 100 of HI (%ADI) based on probabilistic exposure assessment.

Characterization and annealing effect of tantalum oxide thin film by thermal chemical (열CVD방법으로 증착시킨 탄탈륨 산화박막의 특성평가와 열처리 효과)

  • Nam, Gap-Jin;Park, Sang-Gyu;Lee, Yeong-Baek;Hong, Jae-Hwa
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.42-54
    • /
    • 1995
  • $Ta_2O_5$ thin film IS a promising material for the high dielectrics of ULSI DRAM. In this study, $Ta_2O_5$ thin film was grown on p-type( 100) Si wafer by thermal metal organic chemical vapo deposition ( MCCVD) method and the effect of operating varialbles including substrate temperature( $T_s$), bubbler temperature( $T_ \sigma$), reactor pressure( P ) was investigated in detail. $Ta_2O_5$ thin film were analyzed by SEM, XRD, XPS, FT-IR, AES, TEM and AFM. In addition, the effect of various anneal methods was examined and compared. Anneal methods were furnace annealing( FA) and rapid thermal annealing( RTA) in $N_{2}$ or $O_{2}$ ambients. Growth rate was evidently classified into two different regimes. : (1) surface reaction rate-limited reglme in the range of $T_s$=300 ~ $400 ^{\circ}C$ and (2: mass transport-limited regime in the range of $T_s$=400 ~ $450^{\circ}C$.It was found that the effective activation energies were 18.46kcal/mol and 1.9kcal/mol, respectively. As the bubbler temperature increases, the growth rate became maximum at $T_ \sigma$=$140^{\circ}C$. With increasing pressure, the growth rate became maximum at P=3torr but the refractive index which is close to the bulk value of 2.1 was obtained in the range of 0.1 ~ 1 torr. Good step coverage of 85. 71% was obtained at $T_s$=$400 ^{\circ}C$ and sticking coefficient was 0.06 by comparison with Monte Carlo simulation result. From the results of AES, FT-IR and E M , the degree of SiO, formation at the interface between Si and TazO, was larger in the order of FA-$O_{2}$ > RTA-$O_{2}$, FA-$N_{2}$ > RTA-$N_{2}$. However, the $N_{2}$ ambient annealing resulted in more severe Weficiency in the $Ta_2O_5$ thin film than the TEX>$O_{2}$ ambient.

  • PDF

The Design and Fabrication of Conversion Layer for Application of Direct-Detection Type Flat Panel Detector (직접 검출형 평판 검출기 적용을 위한 변환층 설계 및 제작)

  • Noh, Si-Cheol;Kang, Sang-Sik;Jung, Bong-Jae;Choi, Il-Hong;Cho, Chang-Hoon;Heo, Ye-Ji;Yoon, Ju-Seon;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.1
    • /
    • pp.73-77
    • /
    • 2012
  • Recently, Interest to the photoconductor, which is used to flat form X-ray detector such as a-Se, $HgI_2$, PbO, CdTe, $PbI_2$ etc. is increasing. In this study, the film layer by using the photoconductive material with particle sedimentation was fabricated and evaluated. The quantization efficiency of the continuous X-ray with the 70 kVp energy bandwidth was analyzed by using the Monte Carlo simulation. With the results, the thickness of film with 64 % quantization efficiency was 180 ${\mu}m$ which is similar to the efficiency of 500 ${\mu}m$ a-Se film. And $HIg_2$ film has the high quantization efficiency of 74 % on 240 ${\mu}m$ thickness. The electrical characteristics of the 239 ${\mu}m$ $Hgl_2$ films produced by particle sedimentation were shown as very low dark current(under 10 $pA/mm^2$), and high sensitivity(19.8 mC/mR-sec) with 1 $V/{\mu}m$ input voltage. The SNR, which is influence to the contrast of X-ray image, was shown highly as 3,125 in low driving voltage on 0.8 $V/{\mu}m$. With the results of this study, the development of the low-cost, high-performance image detector with film could be possible by replacing the film produced by particle sedimentation instead to a-Se detector.

Monitoring and Risk Assessment of Heavy Metals in Edible Mushrooms (국내 유통 버섯 중 중금속 함량 조사 및 위해성 평가)

  • Kim, Ji-Young;Yoo, Ji-Hyock;Lee, Ji-Ho;Kim, Min-Ji;Kang, Dae-Won;Ko, Hyeon-Seok;Hong, Su-Myeong;Im, Geon-Jae;Kim, Doo-Ho;Jung, Goo-Bok;Kim, Won-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.1
    • /
    • pp.37-44
    • /
    • 2012
  • BACKGROUND: Many edible mushrooms are known to accumulate high levels of heavy metals. This research was focused on health risk assessment to investigate the mushrooms in Korea, arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg) contaminations in edible mushrooms in cultivated areas were investigated, and health risk was assessed through dietary intake of mushrooms. METHODS AND RESULTS: The heavy metals in mushrooms were analyzed by ICP/MS after acid digestion. Probabilistic health risk were estimated by Monte-Carlo simulation techniques. The average contents of As, Cd, Pb, and Hg were $0.035{\pm}0.042$ mg/kg, $0.017{\pm}0.020$ mg/kg, $0.043{\pm}0.013$ mg/kg, and $0.004{\pm}0.004$ mg/kg, respectively. The results showed that contents of Cd and Pb did not exceed maximum residual levels established by European Uion regulation (Cd 0.20 mg/kg and Pb 0.30 mg/kg). For health risk assessment, estimated intakes in all age populations did not exceed the provisional tolerable daily intake of As and Hg, provisional tolerable monthly intake of Cd, provisional tolerable weekly intake of Pb. The Hazard Index (HI) were ranged from $0.03{\times}10^{-4}{\sim}0.01{\times}10^{-3}$ for As, $0.02{\times}10^{-3}{\sim}0.81{\times}10^{-3}$ for Cd, $0.06{\times}10^{-3}{\sim}0.38{\times}10^{-3}$ for Pb, and $0.08{\times}10^{-4}{\sim}0.14{\times}10^{-3}$ for Hg at general population. CONCLUSION: The HI from the ratio analysis between daily exposure and safety level values was less than 1.0. This results demonstrated that human exposure to heavy metals through dietary intake of mushrooms might not cause adverse effect.