• 제목/요약/키워드: Monte-Carlo collision

검색결과 103건 처리시간 0.025초

신경 회로망을 이용한 보행자와의 충돌 위험 판단 방법 (Collision Risk Assessment for Pedestrians' Safety Using Neural Network)

  • 김범성;박성근;최배훈;김은태;이희진;강형진
    • 제어로봇시스템학회논문지
    • /
    • 제17권1호
    • /
    • pp.6-11
    • /
    • 2011
  • This paper proposes a new collision risk assessment system for pedestrians's safety. Monte Carlo Simulation (MCS) method is a one of the most popular method that rely on repeated random sampling to compute their result, and this method is also proper to get the results when it is unfeasible or impossible to compute an exact result. Nevertheless its advantages, it spends much time to calculate the result of some situation, we apply not only MCS but also Neural Networks in this problem. By Monte carlo method, we make some sample data for input of neural networks and by using this data, neural networks can be trained for computing collision probability of whole area where can be measured by sensors. By using this trained networks, we can estimate the collision probability at each positions and velocities with high speed and low error rate. Computer simulations will be shown the validity of our proposed method.

저압 열전자 방전 플라즈마의 Monte Carlo 시뮬레이션 (Monte Carlo Simulation of Thermionic Low Pressure Discharge Plasma)

  • 고욱희
    • 전기학회논문지
    • /
    • 제61권12호
    • /
    • pp.1880-1885
    • /
    • 2012
  • Nonlinear dynamical behaviors in thermionic low pressure discharge are investigated using a particle-in-cell(PIC) simulation. An electrostatic PIC code is developed to model the plasma discharge system including the kinetic effects. The elastic collision, excitation collision, ionization collision, and electron-ion recombination collision are considered in this code. The generated electrons and ions are traced to analyze physical characteristics of the plasma. The simulation results show that the nonlinear oscillation structures are observed for cold plasma in the system and the similar structures are observed for warm plasma with a shift in values of the bifurcation parameter. The detailed oscillation process can be subdivided into three distinct mode; anode-glow, temperature-limited, and double-layer modes.

$SP_{6}$ 가스의 전자충돌단면적을 이용한 전자수송계수에 대한 몬테칼로 시뮬레이션 (Monte Carlo Simulation of the Electron transport coefficients using Electron collision cross sections for $SP_{6}$ Gas)

  • 서상현;전병훈;하성철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 추계학술대회 논문집
    • /
    • pp.152-157
    • /
    • 1995
  • The electron transport coefficients in $SP_{6}$ gas is calculated and analysed for range of E/N values from 150∼800(Td) by a Monte Carlo simulation, using a set of electron collision cross sections determined by the authors. The result of the Monte Carlo simulation such as electron drift velocity, ionization and electron attachment coefficients, longitudinal and transverse diffusion coefficients in neatly agreement with the respective experimental and theoretical for a range of E/N. The validity of the results obtained has been confirmed by a Monte Carlo simulation carried out parallel to the analysis.

  • PDF

A Probabilistic Algorithm for Multi-aircraft Collision Detection and Resolution in 3-D

  • Kim, Kwang-Yeon;Park, Jung-Woo;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권2호
    • /
    • pp.1-8
    • /
    • 2008
  • This paper presents a real-time algorithm for collision detection, collision avoidance and guidance. Three-dimensional point-mass aircraft models are used. For collision detection, conflict probability is calculated by using the Monte-Carlo Simulation. Time at the closest point of approach(CPA) and distance at CPA are needed to determine the collision probability, being compared to certain threshold values. For collision avoidance, one of possible maneuver options is chosen to minimize the collision probability. For guidance to a designated way-point, proportional navigation guidance law is used. Two scenarios on encounter situation are studied to demonstrate the performance of proposed algorithm.

$SiH_4-Ar$ 혼합기체의 평균 에너지에 관한 연구 (Analysis of the Mean Energy in $SiH_4-Ar$ Mixture Gases)

  • 김상남
    • 전기학회논문지P
    • /
    • 제55권2호
    • /
    • pp.57-61
    • /
    • 2006
  • This paper calculates and gives the analysis of mean energy in pure $SiH_4,\;Ar-SiH_4$ mixture gases ($SiH_4-0.5[%],\;5[%]$) over the range of $E/N =0.01{\sim}300[Td]$, p = 0.1, 1, 5.0 [Torr] by Monte Carlo the Backward prolongation method of the Boltzmann equation using computer simulation without using expensive equipment. The results have been obtained by using the electron collision cross sections by TOF, PT, SST sampling, compared with the experimental data determined by the other author. It also proved the reliability of the electron collision cross sections and shows the practical values of computer simulation. The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $SiH_4$ and Ar, were used. The differences of the transport coefficients of electrons in $SiH_4$, mixtures of $SiH_4$ and Ar, have been explained by the deduced energy distribution functions for electrons and the complete collision cross-sections for electrons. A two-term approximation of the Boltzmann equation analysis and Monte Carlo simulation have been used to study electron transport coefficients.

MCSBEq에 의한 SF6-Ar혼합기체의 확산계수 (Diffusion Coefficients for Electrons in SF6-Ar Gas Mixtures by MCS-BEq)

  • 김상남
    • 전기학회논문지P
    • /
    • 제64권3호
    • /
    • pp.125-129
    • /
    • 2015
  • Energy distribution function for electrons in SF6-Ar mixtures gas used by MCS-BEq algorithm has been analysed over the E/N range 30~300[Td] by a two term Boltzmann equation and a Monte Carlo Simulation using a set of electron cross sections determined by other authors experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6-Ar$ mixtures were measured by time-of-flight(TOF) method, The results show that the deduced longitudinal diffusion coefficients and transverse diffusion coefficients agree reasonably well with theoretical for a rang of E/N values. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

Electron Transport Properties in Xenon Gas Detectors

  • Date, H.;Ishimaru, Y.;Shimozuma, M.
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.285-288
    • /
    • 2002
  • In this study, we investigate electron transport properties in xenon gas by using a Monte Carlo technique for electrons with energies below 10 keV. First of all, we determine a set of electron collision cross sections with xenon by scrutinizing the cross section data taken from many publications. Then, the W value and the Fano factor for electrons in gaseous xenon are computed by the Monte Carlo simulation on the assumption that electrons undergo single collision events including elastic, excitation and ionization processes. We also evaluate the production number of excited atoms.

  • PDF

시뮬레이션에 의한 SF6-He 혼합기체에서 전자에너지 분포함수 (Electron Energy Distribution Function in SF6-He Gas by Simulation)

  • 김상남
    • 전기학회논문지P
    • /
    • 제63권1호
    • /
    • pp.19-23
    • /
    • 2014
  • This paper describes the electron transport characteristics in $SF_6$-He gas calculated E/N values 0.1~700[Td] by the Monte Carlo simulation and Boltzmann equation method using a set of electron collision cross sections determined by the authors and the values of electron swarm parameters obtained by TOF method. This study gained the values of the electron swarm parameters such as the electron drift velocity, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients for $SF_6$-He gas at a range of E/N. A set of electron collision cross section has been assembled and used in Monte Carlo simulation to predict values of swarm parameters. The result of Boltzmann equation and Monte Carlo Simulation has been compared with experimental data by Ohmori, Lucas and Carter. The swarm parameter from the swarm study are expected to sever as a critical test of current theories of low energy scattering by atoms and molecules.

전자 Swarm법에 의한 $SiH_4$ 플라즈마의 전자이동속도 및 특성에너지 해석 (The Analysis of the Electron Drift Velocity and Characteristics Energy in $SiH_4$ Plasma gas by Electron Swarm method)

  • 이형윤;백승권;하성철
    • 한국전기전자재료학회논문지
    • /
    • 제12권1호
    • /
    • pp.88-93
    • /
    • 1999
  • This paper describes the electron transport characteristics in $SiH_4$ gas calculated for the range of E/n:0.5~300(Td) and Pressure:0.5, 1, 2.5(Torr) by the Monte carlo simulation and Boltzmann equation method using a set of electron collision cross sections determined by the reported results. The motion has been calculated to give swarm parameters for the electron drift velocity, longitudinal and transverse diffusion coefficients, the electron ionization coefficients, characteristics energy and the electron energy distribution function. The electron energy distributions function has been analysed in $SiH_4$ at E/N: 30, 50(Td)for a case of the equilibrium region in the mean electron energy and respective set of electron collision cross sections. The results of Monte carlo simulation and Boltzmann equation have been compared with experimental data by ohmori ad Pollock.

  • PDF

몬테카를로 시뮬레이션을 이용한 발사체 단 분리 운동 분석 (Stage Separation Analysis of Launch Vehicle Using Monte Carlo Simulation)

  • 오충석;선병찬;박용규;노웅래
    • 한국항공우주학회지
    • /
    • 제43권4호
    • /
    • pp.341-348
    • /
    • 2015
  • 본 논문에서는 일반적인 발사체의 형상에 대하여 몬테카를로 시뮬레이션을 적용하여 분리 유격 분석을 수행하였다. 단 분리는 매우 짧은 시간동안 이루어지며, 매우 많은 운동 변수가 관계되고 충돌 발생시 발사 실패가 나타나는 매우 중요한 비행 이벤트이다. 다양한 오차요인이 무작위(random)로 발생하는 경우에도 설정된 유격조건 내에서 분리가 됨을 확인하기 위해 일반적인 발사체 형상에 대한 단 분리 분석을 수행하였다. 몬테카를로 분석 기법을 발사체 단 분리 분석에 적용함으로서 단 분리 운동시 확률적인 결과들을 제시하였다.