• Title/Summary/Keyword: Monte-Carlo Modeling

Search Result 282, Processing Time 0.035 seconds

Diagnosis of the Transitional Disk Structure of AA Ori by Modeling of Multi-Wavelength Observations

  • Kim, Kyoung Hee;Kim, Hyosun;Lee, Chang Won;Lyo, Aran
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.42.2-42.2
    • /
    • 2020
  • We report on multi-wavelength observations of AA Ori, a Young Stellar Object in Orion-A star-forming region. AA Ori is known to have a pre-transitional disk based on infrared observations including Spitzer/IRS data. We construct its broadband spectral energy distribution (SED) by not only taking data in the optical and IR region but also including Herschel/PACS, JCMT/SCUBA, and SMA observational data. We use the Monte Carlo radiative transfer code (RADMC-3D) to reconstruct the SED with a viscous accretion disk model initialized by a radially continuous disk and finally having an inner and outer dusty disk separated by a dust-depleted radial gap. By comparing the model SEDs with different configurations of disk parameters, we discuss the limits to find a single solution of model parameters to fit the data. We suggest that some models with a modified inner disk surface density gradient and some degree of dust depletion in the inner disk can explain the AA Ori's SED, from which we infer that the inner disk of AA Ori has evolved. We present that model configurations of a pre-transitional disk with a large gap extended to 60-80 AU in a settled dusty disk of a few hundred AU size with a high inclination angle (~60°) also create model SEDs close to the observed one. To distinguish whether the disk has a just-opened narrow gap or a large gap, with an altered surface density of the inner disk extended to 10 AU, we suggest a further investigation of AA Ori with high angular resolution observations.

  • PDF

Reliability Analysis of Chloride Ion Penetration based on Level II Method for Marine Concrete Structure (해양 콘크리트 구조물에 대한 Level II 수준에서의 염소이온침투 신뢰성 해석)

  • Han, Sang-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.129-139
    • /
    • 2008
  • Due to uncertainty of numerous variables in durability model, a probalistic approach is increasing. Monte Carlo simulation (Level III method) is an easily accessible method, but requires a lot of repeated operations. This paper evaluated the effectiveness of First Order Second Moment method (Level II method), which is more convenient and time saving method than MCS, to predict the corrosion initiation in harbor concrete structure. Mean Value First Order Second Moment method (MV FOSM) and Advanced First Order Second Moment method (AFOSM) are applied to the error function solution of Fick's second law modeling chloride diffusion. Reliability index and failure probability based on MV FOSM and AFOSM are compared with the results by MCS. The comparison showed that AFOSM and MCS predict the similar reliability index and MV FOSM underestimates the probability of corrosion initiation by chloride attack. Also, the sensitivity of variables in durability model to corrosion initiation probability was evaluated on the basis of AFOSM. The results showed that AFOSM is a simple and efficient method to estimate the probability of corrosion initiation in harbor structures.

Bayesian ordinal probit semiparametric regression models: KNHANES 2016 data analysis of the relationship between smoking behavior and coffee intake (베이지안 순서형 프로빗 준모수 회귀 모형 : 국민건강영양조사 2016 자료를 통한 흡연양태와 커피섭취 간의 관계 분석)

  • Lee, Dasom;Lee, Eunji;Jo, Seogil;Choi, Taeryeon
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.1
    • /
    • pp.25-46
    • /
    • 2020
  • This paper presents ordinal probit semiparametric regression models using Bayesian Spectral Analysis Regression (BSAR) method. Ordinal probit regression is a way of modeling ordinal responses - usually more than two categories - by connecting the probability of falling into each category explained by a combination of available covariates using a probit (an inverse function of normal cumulative distribution function) link. The Bayesian probit model facilitates posterior sampling by bringing a latent variable following normal distribution, therefore, the responses are categorized by the cut-off points according to values of latent variables. In this paper, we extend the latent variable approach to a semiparametric model for the Bayesian ordinal probit regression with nonparametric functions using a spectral representation of Gaussian processes based BSAR method. The latent variable is decomposed into a parametric component and a nonparametric component with or without a shape constraint for modeling ordinal responses and predicting outcomes more flexibly. We illustrate the proposed methods with simulation studies in comparison with existing methods and real data analysis applied to a Korean National Health and Nutrition Examination Survey (KNHANES) 2016 for investigating nonparametric relationship between smoking behavior and coffee intake.

Modeling Consumers' WOM (Word-Of-Mouth) Behavior with Subjective Evaluation and Objective Information on High-tech Products (하이테크 제품에 대한 소비자의 주관적 평가와 객관적 정보 구전 활동에 대한 연구)

  • Chung, Jaihak
    • Asia Marketing Journal
    • /
    • v.11 no.1
    • /
    • pp.73-92
    • /
    • 2009
  • Consumers influence other consumers' brand choice behavior by delivering a variety of objective or subjective information on a particular product, which is called WOM (Word-Of-Mouth) activities. For WOM activities, WOM senders should choose messages to deliver to other consumers. We classify the contents of the messages a consumer chooses for WOM delivery into two categories: Subjective (positive or negative) evaluation and objective information on products. In our study, we regard WOM senders' activities as a choice behavior and introduce a choice model to study the relationship between the choice of different WOM information (WOM with positive or negative subjective evaluation and WOM with objective information) and its influencing factors (information sources and consumer characteristics) by developing two bivariate Probit models. In order to consider the mediating effects of WOM senders' product involvement, product attitude, and their characteristics (gender and age), we develop three second-level models for the propagation of positive evaluations, of negative evaluations, and of objective information on products in an hierarchical Bayesian modeling framework. Our empirical results show that WOM senders' information choice behavior differs according to the types of information sources. The effects of information sources on WOM activities differ according to the types of WOM messages (subjective evaluation (positive or negative) and objective information). Therefore, our study concludes that WOM activities can be partially managed with effective communication plans influencing on consumers' WOM message choice behavior. The empirical results provide some guidelines for consumers' propagation of information on products companies want.

  • PDF

Performance Estimation of Large-scale High-sensitive Compton Camera for Pyroprocessing Facility Monitoring (파이로 공정 모니터링용 대면적 고효율 콤프턴 카메라 성능 예측)

  • Kim, Young-Su;Park, Jin Hyung;Cho, Hwa Youn;Kim, Jae Hyeon;Kwon, Heungrok;Seo, Hee;Park, Se-Hwan;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Compton cameras overcome several limitations of conventional mechanical collimation based gamma imaging devices, such as pin-hole imaging devices, due to its electronic collimation based on coincidence logic. Especially large-scale Compton camera has wide field of view and high imaging sensitivity. Those merits suggest that a large-scale Compton camera might be applicable to monitoring nuclear materials in large facilities without necessity of portability. To that end, our research group have made an effort to design a large-scale Compton camera for safeguard application. Energy resolution or position resolution of large-area detectors vary with configuration style of the detectors. Those performances directly affect the image quality of the large-scale Compton camera. In the present study, a series of Geant4 Monte Carlo simulations were performed in order to examine the effect of those detector parameters. Performance of the designed large-scale Compton camera was also estimated for various monitoring condition with realistic modeling. The conclusion of the present study indicates that the energy resolution of the component detector is the limiting factor of imaging resolution rather than the position resolution. Also, the designed large-scale Compton camera provides the 16.3 cm image resolution in full width at half maximum (angular resolution: $9.26^{\circ}$) for the depleted uranium source considered in this study located at the 1 m from the system when the component detectors have 10% energy resolution and 7 mm position resolution.

Sequential Bayesian Updating Module of Input Parameter Distributions for More Reliable Probabilistic Safety Assessment of HLW Radioactive Repository (고준위 방사성 폐기물 처분장 확률론적 안전성평가 신뢰도 제고를 위한 입력 파라미터 연속 베이지안 업데이팅 모듈 개발)

  • Lee, Youn-Myoung;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.179-194
    • /
    • 2020
  • A Bayesian approach was introduced to improve the belief of prior distributions of input parameters for the probabilistic safety assessment of radioactive waste repository. A GoldSim-based module was developed using the Markov chain Monte Carlo algorithm and implemented through GSTSPA (GoldSim Total System Performance Assessment), a GoldSim template for generic/site-specific safety assessment of the radioactive repository system. In this study, sequential Bayesian updating of prior distributions was comprehensively explained and used as a basis to conduct a reliable safety assessment of the repository. The prior distribution to three sequential posterior distributions for several selected parameters associated with nuclide transport in the fractured rock medium was updated with assumed likelihood functions. The process was demonstrated through a probabilistic safety assessment of the conceptual repository for illustrative purposes. Through this study, it was shown that insufficient observed data could enhance the belief of prior distributions for input parameter values commonly available, which are usually uncertain. This is particularly applicable for nuclide behavior in and around the repository system, which typically exhibited a long time span and wide modeling domain.

Fast Bayesian Inversion of Geophysical Data (지구물리 자료의 고속 베이지안 역산)

  • Oh, Seok-Hoon;Kwon, Byung-Doo;Nam, Jae-Cheol;Kee, Duk-Kee
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.3
    • /
    • pp.161-174
    • /
    • 2000
  • Bayesian inversion is a stable approach to infer the subsurface structure with the limited data from geophysical explorations. In geophysical inverse process, due to the finite and discrete characteristics of field data and modeling process, some uncertainties are inherent and therefore probabilistic approach to the geophysical inversion is required. Bayesian framework provides theoretical base for the confidency and uncertainty analysis for the inference. However, most of the Bayesian inversion require the integration process of high dimension, so massive calculations like a Monte Carlo integration is demanded to solve it. This method, though, seemed suitable to apply to the geophysical problems which have the characteristics of highly non-linearity, we are faced to meet the promptness and convenience in field process. In this study, by the Gaussian approximation for the observed data and a priori information, fast Bayesian inversion scheme is developed and applied to the model problem with electric well logging and dipole-dipole resistivity data. Each covariance matrices are induced by geostatistical method and optimization technique resulted in maximum a posteriori information. Especially a priori information is evaluated by the cross-validation technique. And the uncertainty analysis was performed to interpret the resistivity structure by simulation of a posteriori covariance matrix.

  • PDF

Reliability-Based Design Optimization Using Enhanced Pearson System (개선된 피어슨 시스템을 이용한 신뢰성기반 최적설계)

  • Kim, Tae-Kyun;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.125-130
    • /
    • 2011
  • Since conventional optimization that is classified as a deterministic method does not consider the uncertainty involved in a modeling or manufacturing process, an optimum design is often determined to be on the boundaries of the feasible region of constraints. Reliability-based design optimization is a method for obtaining a solution by minimizing the objective function while satisfying the reliability constraints. This method includes an optimization process and a reliability analysis that facilitates the quantization of the uncertainties related to design variables. Moment-based reliability analysis is a method for calculating the reliability of a system on the basis of statistical moments. In general, on the basis of these statistical moments, the Pearson system estimates seven types of distributions and determines the reliability of the system. However, it is technically difficult to practically consider the Pearson Type IV distribution. In this study, we propose an enhanced Pearson Type IV distribution based on a kriging model and validate the accuracy of the enhanced Pearson Type IV distribution by comparing it with a Monte Carlo simulation. Finally, reliability-based design optimization is performed for a system with type IV distribution by using the proposed method.

Monte Carlo Simulation of Absorbed Energy by Gold Nano-Particles for Proton (양성자에 대한 금 나노입자의 밀도에 따른 흡수 에너지의 몬테카를로 전산모사)

  • Kwon Su Chon
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Proton therapy is known for its superior treatment method due to Bragg peak. To enhance the therapeutic effects of protons, research has been conducted on distributing gold nanoparticles within tumors to increase the absorbed dose. While previous studies focused on handling gold nanoparticles at micrometer and nonometer scale, this study proposes a method to computationally estimate the effect of gold nanoparticles at the millimeter scale. The Geant4 toolkit was applied to computational modeling. Assuming a uniform distribution of water, similar to the human body, and gold nanoparticles, the concentration of gold nanoparticles was adjusted using density ratios. When the density ratio was 5%, the gain in absorbed energy due to gold nanoparticles was nearly twice that of the pure water phantom at the Bragg peak. As the density ratio increased, the gain in absorbed energy linearly increased. When gold nanoparticles were distributed in only one voxel at the Bragg peak, the energy of the protons affected only the neighboring voxels. However, in cases where gold nanoparticles were distributed over a wide area, the volume showing 95% of the maximum absorbed energy (9.46 keV) for the pure water phantom (9.95 keV) exhibited an improvement in absorbed energy over a region 16 times larger, and this region increased as the density ratio increased. Further research is needed to quantify the relationship between the density ratio of gold nanoparticles and the relative biological effect (RBE) in the millimeter scale.

GPU Based Feature Profile Simulation for Deep Contact Hole Etching in Fluorocarbon Plasma

  • Im, Yeon-Ho;Chang, Won-Seok;Choi, Kwang-Sung;Yu, Dong-Hun;Cho, Deog-Gyun;Yook, Yeong-Geun;Chun, Poo-Reum;Lee, Se-A;Kim, Jin-Tae;Kwon, Deuk-Chul;Yoon, Jung-Sik;Kim3, Dae-Woong;You, Shin-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.80-81
    • /
    • 2012
  • Recently, one of the critical issues in the etching processes of the nanoscale devices is to achieve ultra-high aspect ratio contact (UHARC) profile without anomalous behaviors such as sidewall bowing, and twisting profile. To achieve this goal, the fluorocarbon plasmas with major advantage of the sidewall passivation have been used commonly with numerous additives to obtain the ideal etch profiles. However, they still suffer from formidable challenges such as tight limits of sidewall bowing and controlling the randomly distorted features in nanoscale etching profile. Furthermore, the absence of the available plasma simulation tools has made it difficult to develop revolutionary technologies to overcome these process limitations, including novel plasma chemistries, and plasma sources. As an effort to address these issues, we performed a fluorocarbon surface kinetic modeling based on the experimental plasma diagnostic data for silicon dioxide etching process under inductively coupled C4F6/Ar/O2 plasmas. For this work, the SiO2 etch rates were investigated with bulk plasma diagnostics tools such as Langmuir probe, cutoff probe and Quadruple Mass Spectrometer (QMS). The surface chemistries of the etched samples were measured by X-ray Photoelectron Spectrometer. To measure plasma parameters, the self-cleaned RF Langmuir probe was used for polymer deposition environment on the probe tip and double-checked by the cutoff probe which was known to be a precise plasma diagnostic tool for the electron density measurement. In addition, neutral and ion fluxes from bulk plasma were monitored with appearance methods using QMS signal. Based on these experimental data, we proposed a phenomenological, and realistic two-layer surface reaction model of SiO2 etch process under the overlying polymer passivation layer, considering material balance of deposition and etching through steady-state fluorocarbon layer. The predicted surface reaction modeling results showed good agreement with the experimental data. With the above studies of plasma surface reaction, we have developed a 3D topography simulator using the multi-layer level set algorithm and new memory saving technique, which is suitable in 3D UHARC etch simulation. Ballistic transports of neutral and ion species inside feature profile was considered by deterministic and Monte Carlo methods, respectively. In case of ultra-high aspect ratio contact hole etching, it is already well-known that the huge computational burden is required for realistic consideration of these ballistic transports. To address this issue, the related computational codes were efficiently parallelized for GPU (Graphic Processing Unit) computing, so that the total computation time could be improved more than few hundred times compared to the serial version. Finally, the 3D topography simulator was integrated with ballistic transport module and etch reaction model. Realistic etch-profile simulations with consideration of the sidewall polymer passivation layer were demonstrated.

  • PDF