• Title/Summary/Keyword: Monte Carlo N-Particle

Search Result 74, Processing Time 0.02 seconds

Focal Plane Damage Analysis by the Space Radiation Environment in Aura Satellite Orbit

  • Ko, Dai-Ho;Yeon, Jeoung-Heum;Kim, Seong-Hui;Yong, Sang-Soon;Lee, Seung-Hoon;Sim, Enu-Sup;Lee, Cheol-Woo;De Vries, Johan
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.28.1-28.1
    • /
    • 2011
  • Radiation-induced displacement damage which has caused the increase of the dark current in the focal plane adopted in the Ozone Monitoring Instrument (OMI) was studied in regards of the primary protons and the secondaries generated by the protons in the orbit. By using the Monte Carlo N-Particle Transport Code System (MCNPX) version 2.4.0 along with the Stopping and Range of Ions in Matter version 2010 (SRIM2010), effects of the primary protons as well as secondary particles including neutron, electron, and photon were investigated. After their doses and fluxes that reached onto the charge-coupled device (CCD) were examined, displacement damage induced by major sources was presented.

  • PDF

Evaluation of Neutron Shielding Performance of Polyethylene Coated Boron Carbide-Incorporated Cement Paste using MCNP Simulation (MCNP 시뮬레이션을 통한 폴리에틸렌 코팅 탄화붕소 혼입 시멘트 페이스트의 중성자 차폐 성능 평가)

  • Park, Jae-Yeon;Jee, Hyeon-Seok;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.114-115
    • /
    • 2018
  • To develop an effective shielding material for spent fuel that emits fast neutrons is necessary. In this study, thermal neutron and fast neutron shielding performance of polyethylene coated boron carbide-incorporated cement paste was quantitatively analyzed by Monte Carlo N-Particle transport code (MCNP) simulations. As the results of the simulations, fast neutrons were effectively shielded through large quantity of hydrogen and boron elements in polyethylene and boron carbide.

  • PDF

Simulation of the Determination of NaCl Concentration in Concrete samples by the Neutron induced Prompt Gamma-ray Method

  • Kim, Hyeon-Soo
    • Journal of Environmental Science International
    • /
    • v.13 no.2
    • /
    • pp.175-180
    • /
    • 2004
  • A prompt gamma-ray neutron activation (PGNA) system was simulated by the Monte Carlo N-Particle transport code (MCNP-4A) to estimate the level at which the scattered photon fluence rate, the absolute efficiency of the HPGe-detector, the volume of the concrete sample and the $^{35}$ /Cl(n, ${\gamma}$) reaction rate in this sample contribute to the count rate in the NaCl concentration measurement. The n- ${\gamma}$ fluence rates at the ST-2 beam tube exit of the HANARO reactor were used as input data, and the GAMMA-X type HPGe detector was modeled to tally 1.1649 MeV ${\gamma}$ -rays emitted from the $^{35}$ Cl(n, ${\gamma}$) reaction in the concrete sample. For three cylindrical concrete samples of 13.8, 46.8 and 157.1 ㎤ volumes, respectively, the relations between the NaCl weight fractions of 0.1, 1, 2 and 5 % in each of the concrete samples and the 1.1 649 MeV pulses created in the HPGe detector model were studied. As a result, it was found that the count rate at the same NaCl concentration nearly depends on the volume of the samples in a simulated condition of the same NaCl concentration samples, and that the linearities of the NaCl concentration calibration curves were reasonable in the narrow range of the NaCl weight fraction.

Processing and benchmarking of evaluated nuclear data file/b-viii.0β4 cross-section library by analysis of a series of critical experimental benchmark using the monte carlo code MCNP(X) and NJOY2016

  • Ouadie, Kabach;Abdelouahed, Chetaine;Abdelhamid, Jalil;Abdelaziz, Darif;Abdelmajid, Saidi
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1610-1616
    • /
    • 2017
  • To validate the new Evaluated Nuclear Data File $(ENDF)/B-VIII.0{\beta}4$ library, 31 different critical cores were selected and used for a benchmark test of the important parameter keff. The four utilized libraries are processed using Nuclear Data Processing Code (NJOY2016). The results obtained with the $ENDF/B-VIII.0{\beta}4$ library were compared against those calculated with ENDF/B-VI.8, ENDF/B-VII.0, and ENDF/B-VII.1 libraries using the Monte Carlo N-Particle (MCNP(X)) code. All the MCNP(X) calculations of keff values with these four libraries were compared with the experimentally measured results, which are available in the International Critically Safety Benchmark Evaluation Project. The obtained results are discussed and analyzed in this paper.

A Comparison between the Performance Degradation of 3T APS due to Radiation Exposure and the Expected Internal Damage via Monte-Carlo Simulation (방사선 노출에 따른 3T APS 성능 감소와 몬테카를로 시뮬레이션을 통한 픽셀 내부 결함의 비교분석)

  • Kim, Giyoon;Kim, Myungsoo;Lim, Kyungtaek;Lee, Eunjung;Kim, Chankyu;Park, Jonghwan;Cho, Gyuseong
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The trend of x-ray image sensor has been evolved from an amorphous silicon sensor to a crystal silicon sensor. A crystal silicon X-ray sensor, meaning a X-ray CIS (CMOS image sensor), is consisted of three transistors (Trs), i.e., a Reset Transistor, a Source Follower and a Select Transistor, and a photodiode. They are highly sensitive to radiation exposure. As the frequency of exposure to radiation increases, the quality of the imaging device dramatically decreases. The most well known effects of a X-ray CIS due to the radiation damage are increments in the reset voltage and dark currents. In this study, a pixel array of a X-ray CIS was made of $20{\times}20pixels$ and this pixel array was exposed to a high radiation dose. The radiation source was Co-60 and the total radiation dose was increased from 1 to 9 kGy with a step of 1 kGy. We irradiated the small pixel array to get the increments data of the reset voltage and the dark currents. Also, we simulated the radiation effects of the pixel by MCNP (Monte Carlo N-Particle) simulation. From the comparison of actual data and simulation data, the most affected location could be determined and the cause of the increments of the reset voltage and dark current could be found.

Evaluation of Radiological Effects on the Aptamers to Remove Ionic Radionuclides in the Liquid Radioactive Waste

  • Minhye Lee;Gilyong Cha;Dongki Kim;Miyong Yun;Daehyuk Jang;Sunyoung Lee;Song Hyun Kim;Hyuncheol Kim;Soonyoung Kim
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.44-51
    • /
    • 2023
  • Background: Aptamers are currently being used in various fields including medical treatments due to their characteristics of selectively binding to specific molecules. Due to their special characteristics, the aptamers are expected to be used to remove radionuclides from a large amount of liquid radioactive waste generated during the decommissioning of nuclear power plants. The radiological effects on the aptamers should be evaluated to ensure their integrity for the application of a radionuclide removal technique. Materials and Methods: In this study, Monte Carlo N-Particle transport code version 6 (MCNP6) and Monte Carlo damage simulation (MCDS) codes were employed to evaluate the radiological effects on the aptamers. MCNP6 was used to evaluate the secondary electron spectrum and the absorbed dose in a medium. MCDS was used to calculate the DNA damage by using the secondary electron spectrum and the absorbed dose. Binding experiments were conducted to indirectly verify the results derived by MCNP6 and MCDS calculations. Results and Discussion: Damage yields of about 5.00×10-4 were calculated for 100 bp aptamer due to the radiation dose of 1 Gy. In experiments with radioactive materials, the results that the removal rate of the radioactive 60Co by the aptamer is the same with the non-radioactive 59Co prove the accuracy of the previous DNA damage calculation. Conclusion: The evaluation results suggest that only very small fraction of significant number of the aptamers will be damaged by the radioactive materials in the liquid radioactive waste.

Evaluation and Verification of the Attenuation Rate of Lead Sheets by Tube Voltage for Reference to Radiation Shielding Facilities (방사선 방어시설 구축 시 활용 가능한 관전압별 납 시트 차폐율 성능평가 및 실측 검증)

  • Ki-Yoon Lee;Kyung-Hwan Jung;Dong-Hee Han;Jang-Oh Kim;Man-Seok Han;Jong-Won Gil;Cheol-Ha Baek
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.489-495
    • /
    • 2023
  • Radiation shielding facilities are constructed in locations where diagnostic radiation generators are installed, with the aim of preventing exposure for patients and radiation workers. The purpose of this study is seek to compare and validate the trend of attenuation thickness of lead, the primary material in these radiation shielding facilities, at different maximum tube voltages by Monte Carlo simulations and measurement. We employed the Monte Carlo N-Particle 6 simulation code. Within this simulation, we set a lead shielding arrangement, where the distance between the source and the lead sheet was set at 100 cm and the field of view was set at 10 × 10 cm2. Additionally, we varied the tube voltages to encompass 80, 100, 120, and 140 kVp. We calculated energy spectra for each respective tube voltage and applied them in the simulations. Lead thicknesses corresponding to attenuation rates of 50, 70, 90, and 95% were determined for tube voltages of 80, 100, 120, and 140 kVp. For 80 kVp, the calculated thicknesses for these attenuation rates were 0.03, 0.08, 0.21, and 0.33 mm, respectively. For 100 kVp, the values were 0.05, 0.12, 0.30, and 0.50 mm. Similarly, for 120 kVp, they were 0.06, 0.14, 0.38, and 0.56 mm. Lastly, at 140 kVp, the corresponding thicknesses were 0.08, 0.16, 0.42, and 0.61 mm. Measurements were conducted to validate the calculated lead thicknesses. The radiation generator employed was the GE Healthcare Discovery XR 656, and the dosimeter used was the IBA MagicMax. The experimental results showed that at 80 kVp, the attenuation rates for different thicknesses were 43.56, 70.33, 89.85, and 93.05%, respectively. Similarly, at 100 kVp, the rates were 52.49, 72.26, 86.31, and 92.17%. For 120 kVp, the attenuation rates were 48.26, 71.18, 87.30, and 91.56%. Lastly, at 140 kVp, they were measured 50.45, 68.75, 89.95, and 91.65%. Upon comparing the simulation and experimental results, it was confirmed that the differences between the two values were within an average of approximately 3%. These research findings serve to validate the reliability of Monte Carlo simulations and could be employed as fundamental data for future radiation shielding facility construction.

Correlation Between Mechanical Behavior and Electrical Resistance Change in Carbon Particle Dispersed Plastic Composite

  • Song, D.Y.;Takeda, N.;Kim, J.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.377-382
    • /
    • 2001
  • Mechanical behavior and electrical resistance change of CPDP (carbon particle dispersed plastic) composite consisting of epoxy resin and conductive carbon particle were investigated under monotonic loading and repeated loading-unloading. The electrical resistance almost linearly increased with increasing strain during loading and the residual electrical resistance was observed even after removing load. The value of the residual electrical resistance was dependent on the maximum strain under the applied stress. This result suggests that the estimation of maximum strain (i.e., damage) is possible by the measuring electrical resistance of composite. The behavior of electrical resistance change during and after loading was discussed on the basis of the results of microscopic deformation and fracture observation. Moreover, the relationship between the volume fraction of carbon particle and the electrical resistivity of CPDP was investigated in relation to the percolation theory. Simulation model of percolation structure was established by Monte Carlo method and the simulation result was compared to the experimental results. The electrical resistance change under applied loading was analyzed quantitatively using the percolation equation and a simple model for the critical volume fraction of carbon particle as a function of the mechanical stress. It was revealed that the prediction was in good agreement with the experimental result except in the region near the failure of material.

  • PDF

Organ Dose Conversion Coefficients Calculated for Korean Pediatric and Adult Voxel Phantoms Exposed to External Photon Fields

  • Lee, Choonsik;Yeom, Yeon Soo;Griffin, Keith;Lee, Choonik;Lee, Ae-Kyoung;Choi, Hyung-do
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.69-75
    • /
    • 2020
  • Background: Dose conversion coefficients (DCCs) have been commonly used to estimate radiation-dose absorption by human organs based on physical measurements of fluence or kerma. The International Commission on Radiological Protection (ICRP) has reported a library of DCCs, but few studies have been conducted on their applicability to non-Caucasian populations. In the present study, we collected a total of 8 Korean pediatric and adult voxel phantoms to calculate the organ DCCs for idealized external photon-irradiation geometries. Materials and Methods: We adopted one pediatric female phantom (ETRI Child), two adult female phantoms (KORWOMAN and HDRK Female), and five adult male phantoms (KORMAN, ETRI Man, KTMAN1, KTMAN2, and HDRK Man). A general-purpose Monte Carlo radiation transport code, MCNPX2.7 (Monte Carlo N-Particle Transport extended version 2.7), was employed to calculate the DCCs for 13 major radiosensitive organs in six irradiation geometries (anteroposterior, posteroanterior, right lateral, left lateral, rotational, and isotropic) and 33 photon energy bins (0.01-20 MeV). Results and Discussion: The DCCs for major radiosensitive organs (e.g., lungs and colon) in anteroposterior geometry agreed reasonably well across the 8 Korean phantoms, whereas those for deep-seated organs (e.g., gonads) varied significantly. The DCCs of the child phantom were greater than those of the adult phantoms. A comparison with the ICRP Publication 116 data showed reasonable agreements with the Korean phantom-based data. The variations in organ DCCs were well explained using the distribution of organ depths from the phantom surface. Conclusion: A library of dose conversion coefficients for major radiosensitive organs in a series of pediatric and adult Korean voxel phantoms was established and compared with the reference data from the ICRP. This comparison showed that our Korean phantom-based data agrees reasonably with the ICRP reference data.

Characteristic Evaluation of Exposed Dose with NORM added Consumer Product based on ICRP Reference Phantom (ICRP 기준팬텀 기반의 천연방사성핵종이 포함된 가공제품 사용으로 인한 피폭선량 특성 평가)

  • Yoo, Do Hyeon;Lee, Hyun Cheol;Shin, Wook-Geun;Choi, Hyun Joon;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.4
    • /
    • pp.159-167
    • /
    • 2014
  • In Korea, July 2012, the law as called 'Act on Safety Control of Radioactive Rays Around Living Environment' was implemented to control the consumer product containing Naturally Occurring Radioactive Material (NORM), but, there are no appropriate database and effective dose calculation system. The aim of this study was to develop evaluation technique of the exposure dose with the use of the consumer products containing NORM and to understand the characteristics of the exposed dose according to the radiation type and energy. For the evaluate of exposure dose, the ICRP reference phantom was simulated by the MCNPX code based on Monte Carlo method, and the minimum, medium, maximum energy of alphas, betas, gammas from the representative NORM of Uranium decay series were used as the source term in the simulation. The annual effective doses were calculated by the exposure scenario of the consumer product usage time and position. Short range of the alpha and beta rays are mostly delivered the dose to the skin. On the other hand, the gamma rays mostly delivered the similar dose to all of the organs. The results of the annual effective dose with $1Bq{\cdot}g^{-1}$ radioactive stone-bed and 10% radioactive concentration were employed with the usage time of 7 hours 50 minute per day, the maximum annual effective dose of alphas, betas, gammas were calculated 0.0222, 0.0836, $0.0101mSv{\cdot}y^{-1}$, respectively.