• Title/Summary/Keyword: Monte Carlo (MC) simulation

Search Result 142, Processing Time 0.016 seconds

Evaluation of Chloride Behavior and Service Life in Long-Term Aged FA Concrete through Probabilistic Analysis (장기재령 FA 콘크리트에 대한 염화물 거동 및 확률론적 염해 내구수명 평가)

  • Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.276-285
    • /
    • 2020
  • In this study, accelerated chloride diffusion tests were performed on OPC(Ordinary Portland Cement) and FA(Fly Ash) concrete considering three levels o f W/B(Water to Binder) ratio o n 1,095 curing days. The accelerated chloride diffusion coefficient and the passed charge were evaluated in accordance with Tang's method and ASTM C 1202, and the resistance performance to chloride attack improved over time. FA concrete showed excellent resistance performance against chloride penetration with help of pozzolanic reaction. As the result of the passed charge, FA concrete showed durability improvement, "low" grade to "very low" grade, but OPC concrete changed "moderate" grade to "low" grade at 1,095 curing days. After assuming the design variables used for durability design as normal distribution functions, the service life of each case was evaluated by the probabilistic analysis method based on MCS(Monte Carlo Simulation). In FA concrete, the increase of probability of durability failure was lower than that of OPC concrete with increasing time, because the time-dependent coefficient of FA concrete was up to 3.2 times higher than OPC concrete. In addition, the service life by probabilistic analysis was evaluated lower than the service life by deterministic analysis, since the target probability of durability failure was set to 10%. It is considered that more economical durability design will be possible if the mo re suitable target probability of durability failure is set for various structures through researches on actual conditions and indoor tests under various circumstances.

Probabilistic Earlier GMP Calculation Method for Apartment Using CM at Risk (CM at Risk를 적용한 공동주택의 확률론적 초기 GMP 산정방안)

  • Hyun, Chang-Taek;Go, Gun-Ho;Jin, Zhengxun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.295-303
    • /
    • 2018
  • In the DBB delivery system, the design stage and the construction stage are separated. Because of this, design changes frequently occur, and problems such as construction cost overrun, schedule delay, and quality deterioration happen as well. Recently, in the construction industry CM at Risk(CM@R) delivery system, which can systematically solve the above-mentioned problems of DBB delivery system, meet various demands of clients, and overcome the limited cost and period. In the CM@R delivery system, the contractor negotiates for a maximum guaranteed price(GMP) with the client at the design stage, and the CM performer carries out the construction within the GMP. However, uncertainties are inherent in the GMP calculation because the calculation is based on unfinished drawings and documents. In this study, a Probabilistic Earlier GMP Calculation Method by combining a probabilistic tool of Monte Carlo simulation with a case based reasoning is proposed so that the uncertainty in GMP calculation is reflected. After the earlier GMP is calculated, a process to calculate the $2^{nd}$ GMP at the time of around 80 % of detailed deign and to negotiate with the client to fix the final GMP is proposed. The Probabilistic Earlier GMP Calculation Method is verified through the case study. In this study, researchers set the range of GMP through the proposed probabilistic GMP calculation and tried to reduce the risk through negotiation between the client and the CM performer. The proposed method and process would contribute to the successful introduction of CM@R in Korea.