• Title/Summary/Keyword: Monsoon, Spatial heterogeneity

Search Result 9, Processing Time 0.025 seconds

Water Quality Variation Dynamics between Artificial Reservoir and the Effected Downstream Watershed: the Case Study (인공댐과 그 영향을 받는 하류하천의 수질변동 역동성 : 사례 연구)

  • Han, Jung-Ho;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.382-394
    • /
    • 2008
  • The objective of this study was to analyze temporal trends of water chemistry and spatial heterogeneity between the dam site (Daecheong Reservoir, S1) and the downstream (S2$\sim$S4) using water quality dataset (obtained from the Ministry of Environment, Korea) during 2000$\sim$2007. Water quality, based on eight physical and chemical parameters, varied largely depending on the years, sampling sites, and the discharge volume. Conductivity and nutrients (TN and TP) showed a decreasing trend in the downstream (S4) rather than the dam site during the monsoon. Spatial variation increased toward downstream (S4) from Daecheong Reservoir (S1). Also, BOD and COD increased toward downstream. Because of input of nutrient and pollutant nearby S1, lentic ecosystem in monsoon, BOD and COD were slightly increased. whereas relatively decreased in S4, lotic ecosystem in monsoon, by dilution effect of nutrient and pollutant by discharge from upper dam, S1. Spatial variation of SS increased toward downstream (S4) by the side of Daecheong Reservoir (S1). Based on the dataset, efficient water quality management in the point source tributary streams is required for better water quality of downstream. Monthly characteristics of DO showed the lowest value in the monsoon that tend to increase water temperature. DO was lowest in October at S1 because turbid water, input to the Daecheong Reservoir in the monsoon affect to the postmonsoon period. In contrast, water temperature increased toward summer monsoon, in spite of some differences showed between S1 and S4 environment. Overall, the characteristics of water quality in downstream region have close correlation with discharge amount of Daecheong Reservoir. Thus, those characteristics can explain that discharge control of upper dam mainly affect to the water quality variation in downstream reach.

Lessons from Cross-Scale Studies of Water and Carbon Cycles in the Gwangneung Forest Catchment in a Complex Landscape of Monsoon Korea (몬순기후와 복잡지형의 특성을 갖는 광릉 산림유역의 물과 탄소순환에 대한 교차규모 연구로부터의 교훈)

  • Lee, Dong-Ho;Kim, Joon;Kim, Su-Jin;Moon, Sang-Ki;Lee, Jae-Seok;Lim, Jong-Hwan;Son, Yow-Han;Kang, Sin-Kyu;Kim, Sang-Hyun;Kim, Kyong-Ha;Woo, Nam-Chil;Lee, Bu-Yong;Kim, Sung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.149-160
    • /
    • 2007
  • KoFlux Gwangneung Supersite comprises complex topography and diverse vegetation types (and structures), which necessitate complementary multi-disciplinary measurements to understand energy and matter exchange. Here, we report the results of this ongoing research with special focuses on carbon/water budgets in Gwangneung forest, implications of inter-dependency between water and carbon cycles, and the importance of hydrology in carbon cycling under monsoon climate. Comprehensive biometric and chamber measurements indicated the mean annual net ecosystem productivity (NEP) of this forest to be ${\sim}2.6\;t\;C\;ha^{-1}y^{-1}$. In conjunction with the tower flux measurement, the preliminary carbon budget suggests the Gwangneung forest to be an important sink for atmospheric $CO_2$. The catchment scale water budget indicated that $30\sim40%$ of annual precipitation was apportioned to evapotranspiration (ET). The growing season average of the water use efficiency (WUE), determined from leaf carbon isotope ratios of representative tree species, was about $12{\mu}mol\;CO_2/mmol\;H_2O$ with noticeable seasonal variations. Such information on ET and WUE can be used to constrain the catchment scale carbon uptake. Inter-annual variations in tree ring growth and soil respiration rates correlated with the magnitude and the pattern of precipitation during the growing season, which requires further investigation of the effect of a monsoon climate on the catchment carbon cycle. Additionally, we examine whether structural and functional units exist in this catchment by characterizing the spatial heterogeneity of the study site, which will provide the linkage between different spatial and temporal scale measurements.

Water Quality Characteristics in Keum River Watershed (금강 수계의 수질 특성)

  • An, Kwang-Guk;Yang, Woo-Mi
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.110-120
    • /
    • 2007
  • The objective of this study was to analyze temporal trends of water chemistry and spatial heterogeneity for 13 sampling sites of the Keum River watershed using water quality dataset (obtained from the Ministry of Environment, Korea) during $2001{\sim}2005$. The water quality, based on eight physical and chemical parameters, varied largely depending on the years, seasons, and sampling sites. Seasonal and annual means of conductivity, used as a key indicator for a ionic dilution declined during the monsoon season, and nutrients (TN and TP), based on overall mean of all sites, showed marked declines during the monsoon, compared to those of the premonsoon. In the mean time, BOD and COD had no significant relations with a precipitation, in spite of some differences in the sampling sites. In contrast, major input of SS occurred during the period of summer monsoon. and the variation of TN was similar to that of TP. Spatial trend analyses of all parameters, except for DO and temperature, showed that Site 9 acted as a point source, and thus, water quality at the locations of $S9{\sim}S13$ declined abruptedly over 2 fold, compared to locations of $S1{\sim}S8$. Based on the overall dataset, efficient water quality management in the point source tributary streams is required for better water quality of the main Keum River.

Characteristics of Water Quality in Hyeongsan River Watershed (형산강 수계의 수질 특성)

  • Kim, Yu-Pyo;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.150-160
    • /
    • 2010
  • The objective of this study was to analyze long-term temporal trends of water chemistry and spatial heterogeneity for 7 sampling sites of the Hyeongsan River watershed using water quality dataset during 1999 to 2008 (obtained from the Ministry of Environment, Korea). The water quality, based on eight physical and chemical parameters, varied largely depending on the years, seasons and sampling sites. Seasonal and annual means of conductivity, used as a key indicator for a ionic dilution declined during the monsoon season and TN, based on overall mean of all sites, showed marked declines during the monsoon, compared to those of the premonsoon. In the mean time, BOD and COD had no significant relations with a precipitation, in spite of some differences in the sampling sites. In contrast, major input of SS occurred during the period of summer monsoon season. Spatial trend analyses of all parameters, except for DO and temperatures, showed that gyeongju city acted as a point source, and thus, water quality at the location of Site 4 declined abruptly, compared to locations of Site 1~2. Based on overall dataset, efficient water quality management in the point source tributary streams is required for better water quality of the main Hyeongsan River.

Spatial and Temporal Variations of Water Quality in an Urban Miho Stream and Some Influences of the Tributaries on the Water Quality (청주지역의 도심하천인 미호천에서 시공간적 수질변이 특성 및 유입지천의 영향)

  • Kim, Ji-Il;Choi, Ji-Woong;An, Kwang-Guk
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.433-445
    • /
    • 2014
  • The objective of study was to analyze seasonal and inter-annual patterns of water chemistry of Miho Stream watershed during 2004 - 2007 along with some influences of tributaries and summer monsoon on the stream water quality. For the study, eight physico-chemical parameters such as nitrogen, phosphorus, BOD, COD and chlorophyll-a (CHL) etc. were analyzed in relation to spatial and temporal variability of seven sampling sites of the mainstream and some tributaries in the watershed. In the upstream reach, Mean of BOD, COD and TP averaged 3.2 mg/L, 6.5 mg/L and $186{\mu}g/L$, respectively, indicating an eutrophic conditions as a III-rank in the stream water quality criteria from the Ministry of Environment, Korea(MEK). The eutrophic water was due to a combined effect of Chiljang tributary with high nutrients ($TP=844{\mu}g/L$, TN=8.087 mg/L) and the point sources from some wastewater treatment plants. In the meantime, BOD, TN, and TP in the downstream reach were about > 1.2-1.5 folds than the values of the midstream reaches. This was mainly attributed to effluents of nutrient rich-water (mean TN: 11.980 mg/L) from two tributaries of Musim Stream and Suknam Stream, which is directly influenced by nearby wastewater disposal plants. Seasonal analysis of water chemistry showed that summer monsoon rainfall was one of the important factors influencing the water quality, and water quality had a large spatial heterogeneity during the rainfall period. In the premonsoon, BOD in the downstream averaged $6.0{\pm}2.47mg/L$, which was 1.4-fold greater than the mean of upstream reach. Mean of CHL-a as an indicator of primary productivity in the water body, was > 2.2 - 2.9 fold in the downstream than in the upstream, and this was a result of the high phosphorus loading from the watershed. Overall, our data suggest that some nutrient controls in point-source tributary streams are required for efficient water quality management of Miho Stream.

The Impact of Monsoon Rainfall on the Water Quality in the Upstream Watershed of Southern Han River (하절기의 집중강우가 남한강 상류수계 수질에 미치는 영향)

  • Park, Sung-Min;Shin, Yoon-Keun
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.373-384
    • /
    • 2011
  • The objective of this was to determine how the seasonal intensive rainfall influenced the water quality, and to analyze the long-term temporal trend of water chemistry and spatial heterogeneity in the upstream watershed of Southern Han River using water quality dataset from 1997 to 2007. The largest seasonal variability in most parameters occurred during the two month July and August and there were closely associated with a large spate of summer monsoon rain. Total phosphorus (TP), chemical oxygen demand (COD), and suspended solids (SS) were greater during summer than any other seasons, and had a direct correlation with precipitation (r>0.4, p<0.01, n-120). In addition, dissolved oxygen (DO) had and inverse function with precipitation (r=-0.542, p<0.01). Overall, the data of total phosphorus (TP) and suspended solids (SS) showed that water quality was worst in Site I1, compared to the others. This was due to continuous effluents from the highlands' fields and cattle farms within the upstream area of Doam lake (Song stream). Based on the overall dataset, an efficient water quality management is required in the highlands and farms areas for better water quality with precipitation (r.0.4, p<0.01, n=120).

Spatio-temporal Variation Analysis of Physico-chemical Water Quality in the Yeongsan-River Watershed (영산강 수계의 이화학적 수질에 관한 시공간적 변이 분석)

  • Kang, Sun-Ah;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.73-84
    • /
    • 2006
  • The objective of this study was to analyze long-term temporal trends of water chemistry and spatial heterogeneity for 10 sampling sites of the Yeongsan River watershed using water quality dataset during 1995 to 2004 (obtained from the Ministry of Environment, Korea). The water quality, based on multi-parameters of biological oxygen demand (BOD), chemical oxygen demand (COD), conductivity, dissolved oxygen (Do), total phosphorus (TP), total nitrogen (TN) and total suspended solids (TSS), largely varied depending on the sampling sites, seasons and years. Largest seasonal variabilities in most parameters occurred during the two months of July to August and these were closely associated with large spate of summmer monsoon rain. Conductivity, used as a key indicator for a ionic dilution during rainy season, and nutrients of TN and TP had an inverse function of precipitation (absolute r values> 0.32, P< 0.01, n= 119), whereas BOD and COD had no significant relations(P> 0.05, n= 119) with rainfall. Minimum values in conductivity, TN, and TP were observed during the summer monsoon, indicating an ionic and nutrient dilution of river water by the rainwater. In contrast, major inputs of total suspended solids (TSS) occurred during the period of summer monsoon. BOD values varied with seasons and the values was closely associated (r=0.592: P< 0.01) with COD, while variations of TN were had high correlations (r=0.529 : P< 0.01) with TP. Seasonal fluctuations of DO showed that maximum values were in the cold winter season and minimum values were in the summer seasons, indicating an inverse relation with water temperature. The spatial trend analyses of TP, TN, BOD, COD and TSS, except for conductivity, showed that the values were greater in the mid-river reach than in the headwater and down-river reaches. Conductivity was greater in the down-river sites than any other sites. Overall data of BOD, COD, and nutrients (TN, TP) showed that water quality was worst in the Site 4, compared to those of others sites. This was due to continuous effluents from the wastewater treatment plants within the urban area of Gwangju city. Based on the overall dataset, efficient water quality management is required in the urban area for better water quality.

Hydrological Significance on Interannual Variability of Cations, Anions, and Conductivity in a Large Reservoir Ecosystem (대형 인공호에서 양이온, 음이온 및 전기전도도의 연변화에 대한 수리수문학적 중요성)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.1-8
    • /
    • 2001
  • During April 1993 to November 1994, cations, anions, and conductivity were analyzed to examine how summer monsoon influences the ionic content of Taechung Reservoir, Korea. Interannual variability of ionic content reflected hydrological characteristics between the two years(high-flood year in 1993 vs. draught year in 1994). Cations, anions and conductivity were lowest during peak inflow in 1993 and highest during a drought in 1994. Floods in 1993 markedly decreased total salinity as a result of reduced Ca$^{2+}$ and HCO$_{3}\;^{-}$ and produced extreme spatial heterogeneity (i.e., longitudinal, vertical, and horizontal variation) in ionic concentrations. The dominant process modifying the longitudinal (the headwaters-to-downlake) and vertical (top-to-bottom) patterns in salinity was an interflow current during the 1993 monsoon. The interflow water plunged near a 27${\sim}$37 km-location (from the dam) of the mid-lake and passed through the 10${\sim}$30m stratum of the reservoir, resulting in an isolation of epilimnetic high conductivity water (>100 ${\mu}$S/cm) from advected river water with low conductivity (65${\sim}$75 ${\mu}$S/cm), During postmonsoon 1993, the factors regulating salinity differed spatially; salinity of downlake markedly declined as a result of dilution through the mixing of lake water with river water, whereas in the headwaters it increased due to enhanced CaCO$_{3}$ (originated from limestone/metamorphic rock) of groundwaters entering the reservoir. This result suggests an importance of the basin geology on ion compositions with hydrological characteristics. In 1994, salinity was markedly greater (p<0.001) relative to 1993 and ionic dilution did not occur during the monsoon due to reduced inflow. Overall data suggest that the primary factor influencing seasonal ionic concentrations and compositions in this system is the dilution process depending on the intensity of monsoon rainfall.

  • PDF

Spatial and Temporal Variability of Water Quality in Geum-River Watershed and Their Influences by Landuse Pattern (금강 수계의 시.공간적 수질특성과 토지이용도의 영향)

  • Han, Jeong-Ho;Bae, Young-Ju;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.385-399
    • /
    • 2010
  • The objective of this study was to analyze long term temporal trends of water chemistry and spatial heterogeneity for 83 sampling sites of Geum-River watershed using water quality dataset during 2003~2007 (obtained from the Ministry of Environment, Korea). The water quality, based on multi-parameters of temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (TN), total phosphorus (TP), and electric conductivity (EC), largely varied depending on the landuse patterns, years and seasons. The watershed was classified into three different landuse types: forest stream (Fo), agricultural stream (Ag), and urban stream (Ur). Largest seasonal variabilities in most parameters occurred during the two months of July to August and these were closely associated with large spate of summer monsoon rain. Conductivity, used as a key indicator for an ionic dilution during rainy season, and nutrients of TN and TP had inverse functions of precipitation. BOD, COD decrease during the rainy season. Minimum values in the conductivity, TN, and TP were observed during the summer monsoon, indicating an ionic and nutrient dilution of river water by the rainwater. In contrast, major inputs of suspended solids (SS) occurred during the period of summer monsoon. The landuse patterns analyses, based on the variables of BOD, COD, TN, TP and SS, showed that the values were greater in the agricultural stream (Ag) than in the forest stream (Fo) and urban stream (Ur) and that water quality was worst in the urban stream (Ur). The overall dataset suggest that efficient water quality management, especially in Gap-Stream and Miho-Stream, which showed worst water quality is required along with some of urban stream (Ur), based on the analysis of landuse patterns.