• Title/Summary/Keyword: Monostatic

Search Result 53, Processing Time 0.022 seconds

Monostatic RCS Measurement for Dielectric Barrier Discharge Plasma (유전체 장벽 방전 플라즈마의 Monostatic 레이다 단면적 측정)

  • Lee, Hyunjae;Jung, Inkyun;Ha, Jungje;Shin, Woongjae;Yang, Jin Mo;Lee, Yongshik;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.246-252
    • /
    • 2016
  • In this paper, reduction of monostatic RCS by DBD plasma is measured. For the calibration of monostatic RCS, S-parameters of two metallic plate in different sizes are used and the result is within 0.4 dB error. Metallic plate is put behind DBD plasma generator for measuring reduction of monostatic RCS by DBD plasma. To prevent arc discharge between metallic plate and DBD plasma generator, measurement is progressed spacing the interval between metallic plate and DBD plasma generator. As a result, maximum reduction of monostatic RCS is about 3 dB at 7.4 GHz.

Comparison of Active Sonar Systems in Target Positioning Performance (능동 소나망의 표적 탐지 성능 비교)

  • 박치현;홍우영;고한석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.159-162
    • /
    • 2002
  • This paper deals with target positioning performance according to active sonar formation and measurement error. Generally, active sonar can be categorized into Monostatic, Bistatic and Multistatic cases and their error characteristics are different each other. In this paper, on the assumption that each receiver has two kinds of measurements; sum of distances, and a angle between receiver and target, we suggest least square(LS) method that combines the two measurements in Multistatic formation, and compare Multistatic case with Monostatic and Bistatic cases. Experimental results show that target positioning RMSE in Multistatic sonar is superior to those in Monostatic and Bistatic sonar by approximately 57%.

  • PDF

Performance Comparison for Radar Target Classification of Monostatic RCS and Bistatic RCS (모노스태틱 RCS와 바이스태틱 RCS의 표적 구분 성능 분석)

  • Lee, Sung-Jun;Choi, In-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1460-1466
    • /
    • 2010
  • In this paper, we analyzed the performance of radar target classification using the monostatic and bistatic radar cross section(RCS) for four different wire targets. Short time Fourier transform(STFT) and continuous wavelet transform (CWT) were used for feature extraction from the monostatic RCS and the bistatic RCS of each target, and a multi-layered perceptron(MLP) neural network was used as a classifier. Results show that CWT yields better performance than STFT for both the monostatic RCS and the bistatic RCS. And, when STFT was used, the performance of the bistatic RCS was slightly better than that of the monostatic RCS. However, when CWT was used, the performance of the monostatic RCS was slightly better than that of the bistatic RCS. Resultingly, it is proven that bistatic RCS is a good cadndidate for application to radar target classification in combination with a monostatic RCS.

A Study on Effective Identification of Targets Flying in Formation ISAR Images (ISAR 영상을 이용한 효과적인 편대비행 표적식별 연구)

  • Cha, Sang-Bin;Choi, In-Oh;Jung, Joo-Ho;Park, Sang-Hong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.67-76
    • /
    • 2022
  • Monostatic/Bistatic inverse synthetic aperture radar (ISAR) images are two-dimensional radar cross section (RCS) distributions of a target. When there are many targets in a single radar beam, ISAR images are generated with targets overlapped, so it is difficult to perform the targets identification using the trained database. In addition, it is inefficient to perform target identification using only single monostatic and bistatic ISAR images separately because each method has its own advantages and weaknesses. Therefore, this paper analyzes multiple targets identification performances using monostatic/bistatic ISAR images and proposes a method of identification through fusion of two ISAR images. To identify multiple targets, we use image combination technique using trained single target images. Simulation results show effectiveness of proposed method.

Radar Target Recognition Using a Fusion of Monostatic/Bistatic ISAR Images (모노스태틱/바이스태틱 ISAR 영상 융합을 통한 표적식별 연구)

  • Cha, Sang-Bin;Yoon, Se-Won;Hwang, Seok-Hyun;Kim, Min;Jung, Joo-Ho;Lim, Jin-Hwan;Park, Sang-Hong
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.93-100
    • /
    • 2018
  • Inverse Synthetic Aperture Radar(ISAR) image is 2-dimensional radar cross section distributions of a target. For target approaching along radar's line of sight(LOS), the bistatic ISAR can compensate for the weakness of the monostatic ISAR which can not obtain the vertical resolution of the image. However, bistatic ISAR have longer processing times and variability in scattering mechanisms than monostatic ISAR, so target identification using only bistatic ISAR images can be inefficient. Therefore, this paper analyzes target identification performance using monostatic and bistatic ISAR images of targets approaching along radar's LOS and proposes a method of target identification through fusion of two radars. Simulation results demonstrate that identification performance through fusion is more efficient than identification performance using only monostatic, bistatic ISAR images.

Submarine bistatic target strength analysis based on bistatic-to-monostatic conversion (양상태-단상태 변환 기반 잠수함 양상태 표적강도 해석)

  • Kookhyun Kim;Sung-Ju Park;Keunhwa Lee;Dae-Seung Cho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.138-144
    • /
    • 2024
  • This paper presents a bistatic to monostatic conversion technique to analyze the bistatic target strength of submarines. The technique involves determining the transmission path length of acoustic waves, which are emitted from a source, scattered off an underwater target, and eventually received by a receiver. By generating a corresponding virtual scattering surface, this method effectively transforms the target strength analysis problem from bistatic to monostatic. The converted monostatic target strength problem can be assessed using a well-established monostatic numerical methods. The bistatic target strength analysis for Benchmark Target Strength Simulation (BeTTSi), a widely used target strength model were performed. The results were compared with those calculated by boundary element methods and Kirchhoff approximation, and confirmed the validity and the practical applicability of the proposed analysis technique for evaluating submarine target strength.

Monostatic RCS Reduction by Gap-Fill with Epoxy/MWCNT in Groove Pattern

  • Choi, Won-Ho;Jang, Hong-Kyu;Shin, Jae-Hwan;Song, Tae-Hoon;Kim, Jin-Kyu;Kim, Chun-Gon
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.101-106
    • /
    • 2012
  • In this study, we investigated the effect of groove pattern and gap-fill with lossy materials at 15 GHz frequency of Ku-band. We used Epoxy/MWCNT composite materials as gap-fill materials. Although epoxy does not have an absorbance capability, epoxy added conductive fillers, which are multi-walled carbon nanotubes (MWCNT), can function as radar absorbing material. Specimens were fabricated with different MWCNT mass fractions (0, 0.5, 1.0, 2.0 wt%) and their permittivity in the Ku-band was measured using the waveguide technique. We investigated the effect of gap-fill on monostatic RCS by calculating RCS with and without gap-fill. For arbitrarily chosen thickness and experimentally obtained relative permittivity, we chose the relative permittivity of MWCNT at 2 wt% (${\varepsilon}_r$=8.8-j2.4), which was the lowest reflection coefficient for given thickness of 3.3 mm at V-pol. and $80^{\circ}$ incident angle. We also checked the monostatic RCS and the field intensity inside the groove channel. In the case of H-pol, gap-fill was not affected by the monostatic RCS and magnitude was similar with or without gap-fill. However, in the case of V-pol, gap-fill effectively reduced the monostatic RCS. The field intensity inside the groove channel reveals that different RCS behaviors depend on the wave polarizations.

Comparison of Active Sonar Target Positioning Performance and Optimal Sensor Arrangement (능동 소나 위치 추정 성능 비교 및 최적 수신망 배치)

  • 박치현;홍우영;고한석;김인익
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.224-232
    • /
    • 2003
  • In this paper, efficient deployment method of sensors and target positioning performance with respect to measurement error are dealt with. Active sonar can be categorized into Monostatic, Bistatic, Multistatic sonar, and characteristics of respective sonar are different. Assuming that each sensor can receive range and angular information, we compare the performance of Monostatic, Bistatic, and Multistatic systems. And we suggest Weighted least square (WLS) which gives the weight to former case, LS. In particular. adopting suggested method we investigate the target positioning performance according to number of sensor, distance from transmitter to receiver, and propose efficient arrangement rule for Multistatic sonar configurations. According to the experimental results, RMSE of Multistatic sonar is found to be superior to Monostatic and Bistatic by 35.98%. 37.45% respectively, and WLS is superior to LS approximately by 7.4% in average. Furthermore, as the difference of respective sensor's variance is large, it is observed that the improvement ratio of target positioning performance is increased.

Bistatic Synthetic Aperture Radar Imaging Using a Monostatic Equivalent Model (모노스태틱 등가 모델을 활용한 바이스태틱 SAR 영상 형성에 관한 연구)

  • Ryu, Bo-Hyun;Kang, Byung-Soo;Lee, Myung-Jun;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.9
    • /
    • pp.693-700
    • /
    • 2018
  • In this paper, we propose a method to generate SAR(synthetic aperture radar) images for bistatic radar. The bistatic SAR can overcome several limitations of monostatic SAR, because the former can be applied to a variety of scenarios, compared to the latter. However, no study has been conducted on bistatic SAR imaging so far. In this paper, we propose a method to generate bistatic SAR images using the monostatic equivalent model and conventional monostatic SAR imaging algorithms. Simulations using airborne SAR in the bistatic geometry validated the efficacy of the proposed method.

Adaptive Filtering Processing for Target Signature Enhancement in Monostatic Borehole Radar Data

  • Hyun, Seung-Yeup;Kim, Se-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.2
    • /
    • pp.79-81
    • /
    • 2014
  • In B-scan data measured by a pulse-type monostatic borehole radar, target signatures are seriously obscured by two clutters that differ in orientation and intensity. The primary clutter appears as a nearly constant time delay, which is caused by internal ringing between antenna and transceiver in the radar system. The secondary clutter occurs as an oblique time delay due to the guided borehole wave along the logging cable of the radar antenna. This issue led us to perform adaptive filtering processing for orientation-based clutter removal. This letter describes adaptive filtering processing consisting of a combination of edge detection, data rotation, and eigenimage filtering. We show that the hyperbolic signatures of a dormant air-filled tunnel target can be more distinctly enhanced by applying the proposed approach to the B-scan data, which are measured in a well-suited test site for underground tunnel detection.