• Title/Summary/Keyword: Monomethylarsonic acid(MMA)

Search Result 8, Processing Time 0.018 seconds

A Comparison of Sonication and Microwave-assisted Extraction Method for Speciation of Arsenic in Fish Tissue, DORM-2 (어류중 비소의 종분화 분석을 위한 초음파 추출법과 마이크로파 추출법의 비교)

  • Yoon, Cheol-Ho;Park, Yong-Chul;Hong, Jong-Ki
    • Analytical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.134-142
    • /
    • 2003
  • Comparison of a microwave-assisted extraction with sonication extraction was performed for arsenic speciation in fish tissue with chromatographic separation and inductively coupled plasma mass spectrometry detection. The detection limits of arsenicals with ultrasonic nebulizerand cross-flow nebulizer were shown to be similar. The arsenicals investigated were arsenobetaine (AsB), arsenite [As(III)], dimethylarsine acid (DMA), monomethylarsonic acid (MMA), arsenate [As(v)], and phenylarsonic acid (PAA). Quantitative extraction of arsenicals from dogfish muscle, DORM-2, standard reference material of NRCC (National Research Council of Canada) was achieved using 50% (v/v) methanol-water in both extraction methods. Extraction efficiency of arsenobetaine in both methods is greater than 82% with RSDs on replicates of less than 5%. The concentrations of AsB determined in extract of microwave assisted extraction and sonication methods were $14.18{\pm}0.42mg\;kg^{-1}$ and $13.54 {\pm}0.84mg\;kg^{-1}$, respectively. And the concentrations of DMA were $0.45{\pm}0.06mg\;kg^{-1}$ and $0.44{\pm}0.06mg\;kg^{-1}$, respectively.

Bioanalytical method validation for determination of arsenic speciation in dog plasma using HPLC-ICP/MS (Dog 혈장 중 HPLC-ICP/MS를 이용한 비소 화학종 분석법 검증)

  • Kim, Jong-Hwan;Kwon, Young Sang;Shin, Min-Chul;Kim, Su Jong;Seo, Jong-Su
    • Analytical Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.234-241
    • /
    • 2016
  • The approach presented in this article refers to the bioanalytical method validation for the detection and quantitative determination of arsenic species including arsenite (As(III)), arsenate (As(V)), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) in dog plasma by high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP/MS). The arsenic species were separated using an agilent As speciation column by a mobile phase of 2 mM sodium phosphate monobasic, 0.2 mM ethylenediaminetetraacetic acid disodium salt dehydrate, 10 mM sodium acetate, 3 mM sodium nitrate and 1 % ethyl alcohol at pH 11 (adjusted with 1M NaOH). The method validation experiment was obtained selectivity, linearity, accuracy, precision, matrix effect, recovery, system suitability, dilution integrity and various stabilities. All calibration curves showed good linearity (R2>0.999) within test ranges. The lower limit of quantitation (LLOQ) was 5 ng/mL for As(III), As(V) and DMA, and 20 ng/mL for MMA. The system suitability and dilution values were within 6.5 % and 7.7 %. Subsequently, the developed and validated HPLC-ICP/MS method was also successfully applied to determine the arsenic speciation in dog plasma samples, and the recoveries for the spiked samples were in the range of 91.5–102.2 %. Therefore, this method could be applied to the evaluation of arsenic exposure, health effect assessment and other bio-monitoring studies in biological samples.

Urinary Arsenic Concentrations among Residents in the Vicinity of a Chungcheongnam-do Province Industrial Complex Area (충청남도 내 산업단지 주변에 거주하는 주민들의 요중 비소 농도)

  • Kim, Hee Chan;Roh, Sangchul
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.3
    • /
    • pp.224-233
    • /
    • 2016
  • Objectives: The purpose of this study was to evaluate the relationship between residential surroundings, such as a power plant, steel mill and petrochemical facilities, and urinary arsenic concentrations in Chungcheongnam-do Province, Korea. Methods: Stratified by fish consumption and residential district, median and maximum block sampling was applied. A total of 346 spot urine samples were speciated for $As^{5+}$, $As^{3+}$, monomethylarsonic acid(MMA), dimethylarsonic acid (DMA) and arsenobetaine (AsB). Exposure assessment was based on questionnaires including data on sex, age, current tobacco use, fish consumption, type of water consumed, and occupational category. Results: Urinary $As^{5+}+As^{3+}+MMA+DMA$ concentrations of people living in the vicinity of a power plant ($GM=50.39{\mu}g/g$) were 61% higher than those of people living in the inland area according to median block sampling. Urinary $As^{5+}+As^{3+}+MMA+DMA+AsB$ concentrations of people living in the vicinity of industrial complex area were higher than those of people living in the inland area according to block sampling by median and maximum. Conclusion: Urinary arsenic concentrations of people living in vulnerable areas such as around industrial complexes, especially power plants, were higher than those of people living in an inland area.

A Study on the Optimal Analytical Method for the Determination of Urinary Arsenic by Hydride Generation-Atomic Absorption Spectrometry (HG-AAS법에 의한 요중 비소의 최적 분석법에 관한 연구)

  • Lee, Jong-Wha;Lee, Ui-Seon;Hong, Sung-Chul;Jang, Bong-Ki
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.5
    • /
    • pp.402-410
    • /
    • 2009
  • This study was carried out to examine the optimal analytical method for determination of urinary toxic arsenic (inorganic arsenic and its metabolites) by HG-AAS (hydride generation-atomic absorption spectrometry). In the analysis of SRMs (standard reference materials), method E (addition of 0.4% L-cysteine to pre-reductant and use 0.04M HCl as carrier acid) showed the most accurate results compared with the reference values. In the analysis of 30 urinary samples, analytical results were significantly different depend on the component of pre-reductant and the concentration of carrier acid. When the concentration of carrier acid was higher, the analytical result was lower. The recovery rates of MMA (monomethylarsonic acid) and DMA (dimethylarsenic acid) were varied by the concentration of pre-treatment acid and carrier acid and hydride generation reagents. When the concentration of carrier acid was 1.62 M (5% HCl), the recovery rates of DMA was 1%. The recovery rates of MMA and DMA in method E (=V) were 102% and 100%, respectively. The results of this study suggest that the component and concentration of pre-reductant and carrier acid must be carefully adjusted in the analysis of urinary arsenic, and method E is recommendable as the most precise analytical method for determination of urinary toxic arsenic.

Preliminary Results of Extraction, Separation and Quantitation of Arsenic Species in Food and Dietary Supplements by HPLC-ICP-MS

  • Nam, Sang-Ho;Cheng, John;Mindak, William R.;Capar, Stephen G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.903-908
    • /
    • 2006
  • Various extraction procedures were investigated using reference materials and samples to evaluate extraction efficiency and effectiveness. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure total arsenic and to quantitate arsenic species when coupled to an HPLC (high pressure liquid chromatography). Arsenic species were extracted from rice flour (NIST SRM 1568a) with water/methanol mixtures using accelerated solvent extraction (ASE). Total arsenic extraction efficiency ranged from 42 to 64%, for water and various methanol concentrations. From spinach (NIST SRM 1570), freeze-dried apple, and rice flour (NIST SRM 1568a), arsenic species were extracted with trifluoroacetic acid (TFA) at 100 ${^{\circ}C}$. Total arsenic extraction efficiency was 90% for spinach, 75% for freeze-dried apple, and 83% for rice flour. Enzymatic extraction with alpha-amylase and sonication resulted in extraction efficiency of 104% for rice flour, 98% for freeze-dried apple, and 7% for spinach. Chromatograms of arsenic species extracted by the optimum extraction methods were obtained, and the species were quantified. Arsenite (As(III)), arsenate (As(V)), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA) were found in the apple sample, and DMA and As(V) in the rice flour sample. As(V) and MMA were found in three herbal dietary supplement samples.

Urinary Arsenic Concentrations and their Associated Factors in Korean Adults

  • Bae, Hye-Sun;Ryu, Doug-Young;Choi, Byung-Sun;Park, Jung-Duck
    • Toxicological Research
    • /
    • v.29 no.2
    • /
    • pp.137-142
    • /
    • 2013
  • Arsenic (As) is a well-known human carcinogen and its dietary exposure has been found to be the major route of entry into general population. This study was performed to assess the body levels of As and their associated factors in Korean adults by analyzing total As in urine. Urine and blood samples were collected from 580 adults aged 20 years and older, who had not been exposed to As occupationally. Demographic information was collected with the help of a standard questionnaire, including age, smoking, alcohol intake, job profiles, and diet consumed in the last 24 hrs of the study. Total As, sum of As(III), As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), in urine was determined using atomic absorption spectrometer involving hydride generation method. The geometric mean concentration of total As in urine was $7.10{\mu}g/L$. Urine As was significantly higher in men ($7.63{\mu}g/L$) than in women ($6.75{\mu}g/L$). Age, smoking, alcohol consumption, and job profiles of study subjects did not significantly affect the concentration of As in urine. No significant relationship was observed between body mass index (BMI), Fe, and total cholesterol in serum and urinary As. Urine As level was positively correlated with seaweeds, fishes & shellfishes, and grain intake. A negative correlation between urinary As level and HDL-cholesterol in serum and meat intake was observed. Overall, these results suggest that urinary As concentration could be affected by seafood consumption. Therefore, people who frequently consume seafood and grain need to be monitored for chronic dietary As exposure.

Comparison of Total and Inorganic Arsenic Contamination in Grain and Processed Grain Foods (곡류 및 곡류 가공식품의 총비소 및 무기비소 오염 비교)

  • Eun-Jin, Baek;Myung-Gil, Kim;Hyun-Jue, Kim;Jin-Hee, Sung;You-Jin, Lee;Shin-Hye, Kwak;Eun-Bin, Lee;Hye-Jin, Kim;Won-Joo, Lee;Myung-Jin, Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.6
    • /
    • pp.385-393
    • /
    • 2022
  • The contamination level of inorganic arsenic, a human carcinogen, was investigated in 87 grains and 66 processed grain foods. Two inorganic arsenic species arsenite (As(III)) and arsenate (As(V)) and four organic arsenic monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, arsenocholine were analyzed using HPLC-ICP/MS with high separation and sensitivity and ICP/MS was used to quantify total arsenic. Inorganic arsenic was detected in all grains. And the total arsenic in grains consists of about 70-85% inorganic arsenic and about 10-20% DMA. The concentration of inorganic arsenic was high in rice and black rice cultivated in paddy soil with irrigated water, while the miscellaneous grain in field was low. Mean concentration of inorganic arsenic in rice germ, brown rice and polished rice was 0.160 mg/kg, 0.135 mg/kg, 0.083 mg/kg, respectively, indicating that rice bran contains more arsenic. In processed grain foods, inorganic arsenic concentration varied according to the kind of ingredients and content, and the detection amount was high in processed food with brown rice and germ. The arsenic content of all samples did not exceed each standard, but the intake frequency is high and it is considered that continuous monitoring is necessary for food safety.