• Title/Summary/Keyword: Monomer

Search Result 1,644, Processing Time 0.027 seconds

Synthesis of Surface Crosslinked Poly(sodium acrylate) for Delayed Absorption in Cement Solution (시멘트 수용액에서 흡수 지연을 위한 Crosslinked Poly(sodium acrylate)의 표면 가교)

  • Hwang, Ki-Seob;Jang, Seok-Soo;Jung, Yong-Wook;Lee, Seung-Han;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.363-369
    • /
    • 2011
  • To study the effect of incorporation of a surface crosslinking layer on a crosslinked poly (sodium acrylate) (cPSA) absorbent with ethylene glycol dimethacrylate CEGDMA), we synthesized several surface crosslinked cPSAs with EGDMA by an inverse emulsion polymerization method to delay the absorption of excess water in concrete, Liquid paraffin was used as a continuous phase. cPSA was synthesized with acrylic acid (AA) neutralized with aqueous 8 M sodium hydroxide solution as a monomer, N,N-methylene bisacrylamide (MBA) as crosslinking agent and ammonium persulfate (APS) and sodium metabisulfite (SMBS) as a redox initiator system by inverse emulsion polymerization. FTIR spectroscopy was used to characterize $Ca^{2+}$ ion interaction with cPSA and cPSA-EGDMAs. The swelling ratios of synthesized absorbents were evaluated from the absorption in deionized water, cement saturated aqueous solution and aqueous solution of calcium hydroxide (pH 12). Equilibrium swelling times for cPSA and surface crosslinked cPSA with EGDMA were 2 and 3 hrs, respectively. We also observed an increase in setting time of the cement and an increase in the compressive strength of mortar by addition of the synthesized cPSA-EGDMA.

Preparation of Poly(propylene) Membrane Supported Gel Electrolyte Membranes for Rechargeable Lithium Ion Batteries through Thermal Polymerization of Di(ethylene glycol) Dimethacrylate (Di(ethylene glycol) Dimethacrylate의 열중합에 의한 Poly(propylene) 분리막으로 지지한 리튬이온 이차전지의 겔 전해질막 제조)

  • Yun, Mi-Hye;Kwon, So-Young;Jung, Yoo-Young;Cho, Doo-Hyun;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.259-266
    • /
    • 2010
  • Porous poly(propylene) supported gel polymer electrolytes (GPE) were synthesized by thermal polymerization of DEGDMA [Di(ethylene glycol) dimethacrylate] in electrolyte solutions (1 M solution of $LiPF_6$ in EC/DEC 1 : 1 mixture) at $70^{\circ}C$. AC impedance spectroscopy and cyclic voltammetry were used to evaluate its ionic conductivity and electrochemical stability window of the GPE membranes. Lithium ion battery (LIB) cells were also fabricated with $LiNi_{0.8}Co_{0.2}O_2$/graphite and GPE membranes via thermal polymerization process. Through the thermal polymerization, self sustaining GPE membranes with sufficient ionic conductivities (over $10^{-3}\;S/cm$) and electrochemical stabilities. The LIB cell with 5% monomer showed the best rate-capability and cycleability.

Studies on the Separation of Uranium from Seawater by Composite Fiber Adsorbents(2)(Characterization of Adsorption-Desorption) (복합재료 섬유흡착제를 이용한 해수로부터 우라늄 분리에 관한 연구(2)(흡-탈착 특성))

  • Hwang, Taek-Seong;Park, Jeong-Gi;Hong, Seong-Gwon;Sin, Hyeon-Taek;No, Yeong-Chang
    • Korean Journal of Materials Research
    • /
    • v.6 no.8
    • /
    • pp.761-767
    • /
    • 1996
  • The composite fiber adsorbents containing amidoxime group were prepared and separation properties of uranium ion from seawater were investigated. The amount of uranium adsorption was increased with an increase in adsorption time. When the mole ratio of monomer and comonomer, such as acrylonitrile (AN), tetraethyleneglycol dimethacrylate(TEGMA), and divinylbenzene (DVB), were 1 :0. 1 :0.003, this resin showed the maximum adsorption ability for uranium at a level of pH 8. The amount of uranium adsorption was also increased linearly to one hour with an increase in the content of adsorbent which was added in the composite fiber adsorbents(CFA). The maximum adsorption for uranium of CF A showed at $25^{\circ}C$. Hence, the adsorption ability of CF A for calcium and magnecium ions were increased gradually by the recycling of adsorption and disorption, the adsorption content of their on were 0.3, 0.9mmole/g-adsorbents, respectly. It also showed that the adsorption contents of Ca and \1g ions were much lower than them of uranium. The desorption of uranium on the CF A was carried out , bout 100% within 30min, and the desorption rate of various CF A were equalled.

  • PDF

A Study on The Preparation of Poly(alkyl methacrylate-co-maleic anhydride) as Cold Flow Improvers for Biodiesel Fuels (바이오디젤용 저온 유동성 향상제로서의 폴리 (알킬메타크릴레이트-공-무수말레인산) 제조 연구)

  • Hong, Jin-Sook;Chung, Keun-Wo;Kim, Young-Wun;Kim, Nam-Kyun;Im, Dae-Jae
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.232-240
    • /
    • 2012
  • Bio-diesel (BD) is the mono alkyl esters of long chain fatty acids derived from renewable feed stocks like vegetable oils or animal fats. Bio-diesel shows poorer fuel properties than that of diesel fuel in a cold condition. For the diesel fuel, many cold flow improvers have been developed; however, since primary ingredients of bio-diesel are different from those of the diesel fuel, there is a limit to the cold flow improvement when the same cold flow improvers are added to bio diesel. In this study, to improve low temperature properties of bio-diesel, we developed a cold flow improver using an alkyl methacrylate monomer, prepared via ester reaction, and maleic anhydride and also conducted a ring opening reaction using amine. We characterized the products using $^1H-NMR$, FT-IR and GPC methods. In addition, the cold flow improvements of the products in Soybean BD and Palm BD in the concentration rage of 1000~10000 ppm were investigated. It was found that the addition of LMA2SMA6MA2-C8A in Soybean BD improved the pour point by $12.5\;^{\circ}C$.

Effect of Styrene and Maleic Anhydride Content on Properties of PP/Pulp Composites and Reactive Extrusion of Random PP (랜덤 PP의 반응압출 및 PP/Pulp 복합체 특성에 대한 스티렌과 무수말레인산 함량의 영향)

  • Lee, Jong Won;Kim, Ji Hyun;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.318-323
    • /
    • 2014
  • In order to analyze the effect of maleic anhydride (MAH) content and styrene monomer (SM)/MAH mole ratio on reactive extrusion of maleic anhydride grafted random polypropylenes (MAH-g-rPP), MAH-g-rPPs were prepared by using a twin screw extruder. MAH contents were 0.5, 1.0, 3.0, and 5.0 phr and SM/initiator mole ratio was 0.0, 1.0, and 2.0. Dicumyl peroxide (DCP) was used as an initiator. The graft degree of MAH was confirmed by the existence of carbonyl group (C = O) stretching peak at $1700cm^{-1}$ from FT-IR spectrum. The degree of graft reaction increased up to 3.0 phr MAH and showed the optimum value at 1.0 SM/MAH mole ratio from the area ratio of C = O and C-H stretching peak. Thermal and crystallization properties of MAH-g-rPP and PP/MAH-g-rPP/pulp composites were investigated by DSC, TGA, XRD, and POM. There was a decrease in non-isothermal crystallization temperature of PP/MAH-g-PP/pulp composites. Based on tensile properties and SEM pictures for the fractured surface of PP/MAH-g-PP/pulp composites, MAH content of 1.0 wt% and SM/MAH mole ratio of 1.0 were the optimum formulation as the compatibilizer. The rheological properties of the composites were measured by dynamic Rheometer to compare the processability of the composites with and without compatibilizer. The power law index showed slightly low value at the composites with compatibilizer.

Purification and characterization of the chitinase from Bacillus subtilis JK-56 (Bacillus subtilis JK-56이 생산하는 chitinase isozyme의 정제와 특성 규명)

  • 전홍기;김낙원;정영기
    • Journal of Life Science
    • /
    • v.12 no.1
    • /
    • pp.77-86
    • /
    • 2002
  • Chitin, a $\beta$-1,4 polymer of N-acetyl-D-glucosamine, is one of the most abundant organic compounds in nature. Chitinase (EC 3.2.1.14) is an enzyme that degrades chitin to chito-oligosaccharides, diacetyl rhitobiose and N-acetyl-D-glucosamine. An extracellular chitinase-producing bacterial strain was isolated from soil and named to as Bacillus subtilis JK-56. Optimum culture condition of B. subtilis JK-56 for the production of chitinase was 1% chitin, 0.5% polypepton, 0.1% KCl, 0.05% MnS $O_4$.4$H_2O$, 37$^{\circ}C$, initial pH 7.0 and 40 hour culture time. When B. subtilis JK-56 was grown in the optimum medium, one major active band and two minor active bands were detected by native-PAGE and active staining of the gel. Among them, the major band was purified from the culture supernatant by 70% ammonium sulfate precipitation and native-PAGE with BIO-RAD Model 491 Prep-Cell and named as Chi-56A. Its molecular weight was estimated to be 53kDa monomer and the isoelectric point (pI) was pH 4.3. The pH and temperature for the optimum activity of Chi-56A were pH 6.0 and $65^{\circ}C$, respectively. Chi-56A was stable up to $65^{\circ}C$ and in alkaline region. Its $K_{m}$ value for colloidal chitin was 17.33g/L. HPLC analysis of the reaction products confirmed that Chi-56A was an exo type chitinase.e.

A STUDY ON BONE STRENGTH AND THE DEGREE OF CONVERSION OF DENTIN BONDING AGENTS (수종 상아질 접착제의 결합강도와 중합률에 관한 연구)

  • Kim, Byung-Hyun;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.68-93
    • /
    • 1998
  • The physical properties of polymer are greatly influenced by the extent to which a resin cures. The presence of un reacted monomer can, have a plasticizing effect on the polymer, thereby altering the physical and mechanical properties of dentin bonding agent (DBA). If the DBA does not polymerize sufficiently, it will leave a weak bonding layer and lead to lower bond strength. The purpose of this study was to evaluate the shear bond strengths(SBS) and the degree of conversion (DC) of 4 commercialy avilable dentin bonding systems which are composed of 2 multi-bottle systems [Scotchbond Multi-Purpose (SMP), AeliteBond(AB)] and 2 onebottle systems [SingleBond(SB), One-Step(OS)]. For shear bond strength measurement, labial surfaces of freshly extracted bovine incisors were ground with # 600 grit SiC paper to expose dentin. Four different groups of samples were formed, with 10 samples. being made for each of the 4 commercial DBA in each group according to the curing sequences of DBA and overlayer thickness of composites: Group I (standard cure and 1mm thick composites) : The DBA was light cured and the composites of 1mm thickness was applied ; Group II (standard cure and 2mm thick composites) : The DBA was light cured and the composites of 2mm thickness was applied; Group III (simultaneous cure and 1mm thick composites) : The DBA was not light-cured and simultaneously cured with composites of 1mm thickness; Group N (simultaneous cure and 2mm thick composites) : The DBA was. not light-cured and simultaneously cured with composites of 2mm thickness. The SBS was measured immediately after the composites was bonded to the bovine dentin using an Instron machine. The DC of the DBA was examined in a thin film under simulated conditions of the experimental groups according to the curing sequences and overlayer thickness of composites in the SBS test. using a Fourier transform Infrared(FTIR) spectrometer. The following results were obtained from SBS tests and DC measurements 1. In SBS tests, the multi-bottle DBA(SMP, AB) had a generally higher bond strength values than the one bottle DBA(SB, OS). In DC measurements, the one bottle DBA(SB, OS) had a significantly higher DC than the multi-bottle DBA(SMP, AB). 2. In all DBAs except OS, there was no significant difference between the bond strength of group I (standard cure and 1mm thick composites) and that of group III (simultaneous cure and 1mm thick composites). SMP, SB in Group I had a significantly higher DC than those in group III, but AB, OS in group I had a significantly lower DC than those in group III 3. All DBAs in Goup II (standard cure and 2mm thick composites) had significantly higher bond strength and DC than those in Group N (simultaneous cure and 2mm thick composites). 4. In all DBAs, there was no significantly different SBS and DC between Group I and Group II, but all DBAs in Group III had significantly higher SBS and DC than those in Group IV.

  • PDF

The Effects of Polymerization Catalyst Systems on the Synthesis of Poly(2,6-dimethyl-1,4-phenylene ether) (중합촉매 시스템이 폴리페닐렌에테르의 합성에 미치는 영향)

  • Lee, Chang-Jae;Kim, Yong-Tae;Kim, Jin-Kyu;Kim, Ji-Heung;Nam, Sung-Woo;Jeon, Boong-Soo;Kim, Young-Jun
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.98-103
    • /
    • 2012
  • Poly(2,6-dimethyl-1,4-phenylene ether) (PPE) was synthesized using $Cu(NO_2)_2{\cdot}3H_2O$ or CuCl catalyst with various amounts of ligand and base in several different solvent systems. CuCl/1-methylimidazole/ammonium hydroxide was found to be an effective catalyst system which showed the highest polymer yield and molecular weight. The effects of catalyst/monomer ratio, different amine ligands, and the content of mono-functional reagent 2,4,6-trimethylphenol (TMP) additive on the polymer yield and molecular weight were investigated. Among the co-solvent systems used in this polymerization, chloroform/methanol 9/1(v/v) gave the highest polymer yield and molecular weight ($\overline{M_n}$ 55 K, $\overline{M_w}$ 92 K, PDI 1.7). The catalytic activity between CuCl and CuI was compared by oxygen-uptake experiments and the formation of sideproduct, 5,5'-tetramethyl-4,4'-diphenoquinone (DPQ), was analyzed by ultraviolet spectroscopy.

The Study of Reaction Characteristics of V/W/TiO2 Catalyst Using Se-TiO2 Support On NH3-SCR Reaction (Se-TiO2 지지체를 이용한 V/W/TiO2 NH3-SCR 촉매의 반응 특성 연구)

  • Lee, Yeon Jin;Won, Jong Min;Ahn, Suk Hyun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.599-606
    • /
    • 2021
  • In this study, an experiment and a reaction characteristic study were conducted to enhance the reaction activity of V2O5/WO3/TiO2 at 300 ℃ or less by adding selenium to the support, in a selective catalytic reduction method using ammonia as a reducing agent to remove nitrogen oxides. Se-TiO2 and TiO2 were synthesized using the sol-gel method, and used as a support when preparing V2O5/WO3/TiO2 and V2O5/WO3/Se-TiO2 catalysts. The reaction activity of our catalyst was compared with that of a commercial catalyst. The denitration efficiency of the catalyst using TiO2 prepared by the sol-gel method was lower than that of the catalyst prepared using commercial TiO2, but was improved by the addition of selenium. Thus, the effect of selenium addition on the catalyst structure was analyzed using BET, XRD, Raman, H2-TPR, and FT-IR measurements and the effect of the increase in specific surface area by selenium addition and the formation of monomer and complex vanadium species on reaction characteristics were confirmed.

Synthesis and Characterization of Polymers with Azobenzene and Hexamethylene Groups in Main Chain (주사슬에 아조벤젠기와 헥사메틸렌기를 갖는 고분자의 합성 및 특성)

  • Gu, Su-Jin;Lee, Eung-Jae;Bang, Moon-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.86-92
    • /
    • 2019
  • Polymers with various compositions of azobenzene and hexamethylene groups in the main chain were synthesized by a Schotten-Baumann reaction and their properties were investigated. The chemical structures and physical properties of the synthesized polymers were investigated by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, differential scanning calorimetry, thermogravimetric analysis, polarized optical microscopy, and x-ray diffraction. The polymers showed an inherent viscosity of 1.28-1.36 dl/g and were relatively insoluble in most organic solvents. The melt transition temperature increased rapidly with increasing number of azobenzene groups in the polymer. When the azobenzene monomer content was more than 50 mol%, no melting transition occurred below the decomposition temperature. Among the polymers with a melt transition temperature, the MP-A3C7 and MP-A5C5 polymers were liquid crystalline materials and exhibited a nematic phase with weak liquid crystallinity over a wide liquid crystal temperature range. This difference in the properties of the synthesized polymers is likely due to the changes in intermolecular forces resulting from the linearity and polarity of the trans-form of azobenzene.