• Title/Summary/Keyword: Monolayered

Search Result 29, Processing Time 0.023 seconds

Electrophysiological insights with brain organoid models: a brief review

  • Rian Kang;Soomin Park;Saewoon Shin;Gyusoo Bak;Jong-Chan Park
    • BMB Reports
    • /
    • v.57 no.7
    • /
    • pp.311-317
    • /
    • 2024
  • Brain organoid is a three-dimensional (3D) tissue derived from stem cells such as induced pluripotent stem cells (iPSCs) embryonic stem cells (ESCs) that reflect real human brain structure. It replicates the complexity and development of the human brain, enabling studies of the human brain in vitro. With emerging technologies, its application is various, including disease modeling and drug screening. A variety of experimental methods have been used to study structural and molecular characteristics of brain organoids. However, electrophysiological analysis is necessary to understand their functional characteristics and complexity. Although electrophysiological approaches have rapidly advanced for monolayered cells, there are some limitations in studying electrophysiological and neural network characteristics due to the lack of 3D characteristics. Herein, electrophysiological measurement and analytical methods related to neural complexity and 3D characteristics of brain organoids are reviewed. Overall, electrophysiological understanding of brain organoids allows us to overcome limitations of monolayer in vitro cell culture models, providing deep insights into the neural network complex of the real human brain and new ways of disease modeling.

Ultrastructure of the Ampullate Gland in the Orb Web Spider, Nephila clavata L. Koch I. Excretory Duct of the Large Ampullate Gland (무당거미(Nephila clavata L. Koch) 병상선(甁狀腺)의 미세구조(微細構造) I. 대병상선(大甁狀腺)의 분비관(分泌管))

  • Moon, Myung-Jin;Kim, Chang-Shik;Kim, Woo-Kap
    • Applied Microscopy
    • /
    • v.18 no.2
    • /
    • pp.77-90
    • /
    • 1988
  • The ultrastructure of the excretory duct of the large ampullate gland in the orb web spider, Nephila clavain L. Koch are studied with light and electron microscopes. The excretory ducts of the large ampullate glands connected with the large spinning tubes(spigots) on the anterior spinnerets are basically composed of three superposed types of the layers which are inner cuticles, monolayered epithelial cells and peripheral connective cells. According to the morphological characteristics of the cuticles and internal textures of the epithelial cells, the long excretory ducts are subdivided into three(distal, middle and proximal) portions. Especially, at the distal portion of the ducts near the spinning tubes, the electron lucent subcuticles which had the functions of water removal and orientation of silk fibers are well distributed, whereas at the middle and proximal portions these layers disappeared and instead of these, endocuticles are developed. The endocuticle contains two types of bands, which are electron dense and electron lucent. And along the length of the cuticular stem in the excretory duct, these two alternating bands are twisted spirally. In the cytoplasm of the columnar epithelial cells of the distal portion, rough endoplasmic reticula and Golgj complexes, related to the production of the cuticular materials are well developed. Between the adjacent epithelial cells, specialized septate junctions and desmosomes are formed along the plasma membranes. At the proximal portion of the duct, densely accumulated secretory materials appeared, and these are released to the inner canal by the apocrine secretion.

  • PDF

Characteristics of Developmental Stages in Bacterial Biofilm Formation (세균 생물막 형성의 단계별 특징)

  • Kim Chang-Beom;Rho Jong-Bok;Lee Hyun-Kyung;Choi Sang Ho;Lee Dong-Hun;Park Soon-Jung;Lee Kyu-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Since Anton van Leeuwen­hoek first observed a surface-associated multicellular structure of bacterial cells in the 17th century, it has been shown to exhibit an ability to form a biofilm by numerous bacterial species. The biofilm formation is composed of distinct developmental stages, which include an attachment/adhesion of a single cell, a proliferation toward monolayered coverage, a propagation to aggregated microcolony, a maturation to 3-dimensional structure, and subsequently a local degradation. Investigation to identify the essential factors for bacterial biofilm formation has been performed via classical genetic approaches as well as recently developed technologies. The initial stage requires bacterial motility provided by a flagellum, and outermembrane components for surface signal interaction. Type IV-pilus and autoaggregation factors, e.g., type I-fimbriae or Ag43, are necessary to reach the stages of monolayer and micro colony. The mature biofilm is equipped with extracellular polymeric matrix and internal water-filled channels. This complex architecture can be achieved by differential expressions of several hundred genes, among which the most studied are the genes encoding exopolysaccharide biosyntheses and quorum-sensing regulatory components. The status of our knowledge for the biofilms found in humans and natural ecosystems is discussed in this minireview.

First-principles Calculations on Magnetism of 1H/1T Boundary in Monolayer MoS2 (제일원리계산에 의한 단층 MoS2의 1H/1T 경계 자성)

  • Jekal, Soyoung;Hong, Soon Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.3
    • /
    • pp.71-75
    • /
    • 2016
  • Monolayer $MoS_2$ is energetically most stable when it has a 1H phase, but 1H to 1T phase transition ($1H{\rightarrow}1T$) is easily realized by various ways. Even though magnetic moment is not observed during $1H{\rightarrow}1T$, $0.049{\mu}_B/MoS_2$ is obtained in local 1T phase; 75% 2H and 25% 1T phases are mixed in ($2{\times}2$) supercell. Most magnetic moment is originated from the 1T phase Mo atom in the supercell, while the magnetic moments of other atoms are negligible. As a result, magnetic/non-magnetic boundary is created in the monolayered $MoS_2$. Our result suggests that $MoS_2$ can be applied for spintronics such as a spin transistor.

Effect of Oocyte Age on Electrofusion and In Vitro Development of Nuclear Transplant Embryos in Rabbits (토끼에서 난자의 성숙도가 전기융합 및 핵이식 수정란의 체외발달에 미치는 영향)

  • 이효종;정미경;전병균;최민철;최상용;박충생
    • Journal of Embryo Transfer
    • /
    • v.9 no.1
    • /
    • pp.23-29
    • /
    • 1994
  • The long term goal of this research is to develop an efficient procedure for large scale production of genetically identical or cloned animals. To improve nuclear transpalntation efficiency in the rabbit, this study evaluated the age of nuclear recipient oocytes on the different steps of nuclear transplantation. The ovulated oocytes in different ages were collected from the superovulated does by flushing oviducts with Dulbecco's phosphate buffered saline(D-PBS) supplemented with 10% fetal calf serum(FCS) from 13 to 15, 17 to 20 and 23 to 26 hours after hCG injection. The denuded oocytes were used as nuclear recipient cytoplasm following enucleation by micromanipulation. The blastomeres separated from the 8-cell embryos were used as nuclear donor. The enucleated oocytes receiving a blastomere in the perivitteline space were fused in the 0.28 M mannitol solution at 1.5 kV/cm, 60 sec for three times. The fused oocytes were co-cultured with the monolayered rabbit oviductal epithelial cells in TGM-199 solution with 10% FCS for 72 hours at 37$^{\circ}C$ in a 5% $CO_2$ incubator. The cultured nuclear transplant embryos and in vivo developed embryos collected at 72 hours after hCG injection were stained with Hoechst 33342 dye. Their cell numbers were counted under a fluorescent microscope. The results obtained were summarized as follows ; 1. The aged oocytes(20 hrs. post hCG) showed significantly(P<0.05) higher fusionrates(70 ~ 90%) than the recently ovulated oocytes(30.8%) 2. The aged oocytes which were electrically activated and fused at 20 hours developed to blastocyst at significantly(P<0.05) high rate, while none of the recently ovulated oocytes developed to blastocyst. 3. Even though the aged oocytes at 23~26 hours showed higher fusion rate(85.7%), not only they were inadequate to manipulate but also their developmental potential to blastocyst was highly impaired. 4. The developmental potential in vitro of nuclear transplant embryos was significantly retarded than in vivo deveolped embryos.

  • PDF

Photoluminescent Graphene Oxide Microarray for Multiplex Heavy Metal Ion Analysis

  • Liu, Fei;Ha, Hyun Dong;Han, Dong Ju;Park, Min Su;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.281.2-281.2
    • /
    • 2013
  • Since heavy metal ions included in water or food resources have critical effects on human health, highly sensitive, rapid and selective analysis for heavy metal detection has been extensively explored by means of electrochemical, optical and colorimetric methods. For example, quantum dots (QDs), such as semiconductor QDs, have received enormous attention due to extraordinary optical properties including high fluorescence intensity and its narrow emission peaks, and have been utilized for heavy metal ion detection. However, the semiconductor QDs have a drawback of serious toxicity derived from cadmium, lead and other lethal elements, thereby limiting its application in the environmental screening system. On the other hand, Graphene oxide (GO) has proven its superlative properties of biocompatibility, unique photoluminescence (PL), good quenching efficiency and facile surface modification. Recently, the size of GO was controlled to a few nanometers, enhancing its optical properties to be applied for biological or chemical sensors. Interestingly, the presence of various oxygenous functional groups of GO contributes to opening the band gap of graphene, resulting in a unique PL emission pattern, and the control of the sp2 domain in the sp3 matrix of GO can tune the PL intensity as well as the PL emission wavelength. Herein, we reported a photoluminescent GO array on which heavy metal ion-specific DNA aptamers were immobilized, and sensitive and multiplex heavy metal ion detection was performed utilizing fluorescence resonance energy transfer (FRET) between the photoluminescent monolayered GO and the captured metal ion.

  • PDF

Evaluation of porcine intestinal organoids as an in vitro model for mammalian orthoreovirus 3 infection

  • Se-A Lee;Hye Jeong Lee;Na-Yeon Gu;Yu-Ri Park;Eun-Ju Kim;Seok-Jin Kang;Bang-Hun Hyun;Dong-Kun Yang
    • Journal of Veterinary Science
    • /
    • v.24 no.4
    • /
    • pp.53.1-53.12
    • /
    • 2023
  • Background: Mammalian orthoreovirus type 3 (MRV3), which is responsible for gastroenteritis in many mammalian species including pigs, has been isolated from piglets with severe diarrhea. However, the use of pig-derived cells as an infection model for swine-MRV3 has rarely been studied. Objectives: This study aims to establish porcine intestinal organoids (PIOs) and examine their susceptibility as an in vitro model for intestinal MRV3 infection. Methods: PIOs were isolated and established from the jejunum of a miniature pig. Established PIOs were characterized using polymerase chain reaction (PCR) and immunofluorescence assays (IFAs) to confirm the expression of small intestine-specific genes and proteins, such as Lgr5, LYZI, Mucin-2, ChgA, and Villin. The monolayered PIOs and three-dimensional (3D) PIOs, obtained through their distribution to expose the apical surface, were infected with MRV3 for 2 h, washed with Dulbecco's phosphate-buffered saline, and observed. Viral infection was confirmed using PCR and IFA. We performed quantitative real-time reverse transcription-PCR to assess changes in viral copy numbers and gene expressions linked to intestinal epithelial genes and antiviral activity. Results: The established PIOs have molecular characteristics of intestinal organoids. Infected PIOs showed delayed proliferation with disruption of structures. In addition, infection with MRV3 altered the gene expression linked to intestinal epithelial cells and antiviral activity, and these effects were observed in both 2D and 3D models. Furthermore, viral copy numbers in the supernatant of both models increased in a time-dependent manner. Conclusions: We suggest that PIOs can be an in vitro model to study the infection mechanism of MRV3 in detail, facilitating pharmaceutical development.

Serological Distribution and Properties of Antibiotic Resistance of Escherichia coli from Patients with Diarrhea (설사환자로부터 분리한 대장균의 혈청형 분포 및 항생제 내성유형)

  • 차인호;진성현;박은희;박성아;조현철;이영숙;정석훈;이영길;이상훈
    • Journal of Life Science
    • /
    • v.10 no.3
    • /
    • pp.262-272
    • /
    • 2000
  • As a part of investigation for basic epidemiology of diarrheogenic disease, we attempted isolation of Escherichia coli from patients with diarrhea. Seven hundred and twenty-one strains of E. coli were isolated from 1,239 patients with diarrhea. Seasonal distribution of patient with diarrhea was shown the most high at August (18.2%). Age group distribution of patient was shown the most high at children (54.6%, 2 to 10 years old). The serotypes of 721 E. coli isolates were in order of serotype O44 (16.8%), O153 (8.6%), O1 (7.5%), O166(5.7%), O8 and O86a (4.7%), and O125 (4.6%). The supernates cultured 36 strains among 721 E. coli isolates were indicated cytotoxicity against monolayered Vero cells. All of the isolates were susceptible to amikacin. The isolates were resistant in order of novobiocin (99.0%), moxalactam (97.1%), carbenicillin (96.1%), tetracycline (90.4%), ampicillin (85.9%), gentamicin (84.0%), streptomycin (78.4%), cephalothin (46.6%) and polymyxin B (4.2%). In the antibiotic resistant patterns, 125 kinds of multiple resistance patterns of E. coli isolates were detected. The highest resistant pattern was ampicillin-carbenicillin-chloramphenicol-cephalothin-erythro-mycin- gentamicin-moxalactam-novobiocin-penicillin G-streptomycin-tobramycin-tetracycline-tri methoprim type (24.3%).

  • PDF

Comparison of Heavy Metal Adsorption by Manganese Oxide-Coated Activated Carbon according to Manufacture Method (활성탄-망간 산화물 합성소재의 제조방법에 따른 중금속 흡착특성 비교)

  • Lee, Seul Ji;Lee, Myoung-Eun;Chung, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • The adsorption characteristics of Pb(II) and Cu(II) by the manganese oxide-coated activated carbon (MOAC) were investigated by series of batch experiments. MOAC was prepared by three types of manufacturing methods such as chemical precipitation method (CP), hydrothermal method (HT) and supercritical method (SC). Pseudo-second-order and Langmuir models adequately described kinetics and isotherm of Pb(II) and Cu(II) adsorption on the experimented adsorbents. These results indicated that heavy metal ions were chemically adsorbed onto uniform monolayered adsorption sites. The coating of manganese oxide enhanced the adsorption capacities of AC. And adsorption capacities of Pb(II) and Cu(II) were significantly affected by the manufacturing method of MOAC. The highest adsorption performance was obtained by using SC, followed by HT and CP, which is caused from high uniformity and amount of manganese oxide coated onto AC induced by high temperature and pressure. These results show that MOAC can be used as an effective adsorbent to remediate heavy metal contaminated environment.