• Title/Summary/Keyword: Monocorophium acherusicum

Search Result 12, Processing Time 0.024 seconds

Secondary Production of Monocorophium acherusicum (Amphipoda, Corophiidae) in a Seagrass Bed (Zostera marina)

  • Jeong Seung-Jin;Yu Ok-Hwan;Suh Hae-Lip
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.spc1
    • /
    • pp.236-241
    • /
    • 2006
  • We measured the secondary production of the amphipod Monocorophium acherusicum Costa in a seagrass bed (Zostera marina L.) in Gwangyang Bay, southern Korea. M. acherusicum biomass was positively correlated (P<0.05) with seagrass standing crop, suggesting that there were biological interactions between the two species. M. acherusicum displays two main breeding periods per year: spring (March to April) and fall (October to November). M. acherusicum biomass in the spring breeding periods was higher than in the fall. Annual secondary production of M. acherusicum was 3.54 g DW/$m^2$/yr with an annual P/B ratio of 3.48. Secondary production and the P/B ratio of M. acherusicum were lower than those observed for other amphipods inhabiting seagrass beds. These results suggest that biological interactions between M. acherusicum and seagrass, as well as dietary competition with other amphipods can potentially cause declines in secondary production and the P/B ratio.

Delayed Mortality of Benthic Amphipods Monocorophium acherusicum Exposed to Various Pollutants in Seawater(Cd, Cu, Hg, TBT, Ammonia and Phenanthrene) (유해오염물질에 급성 노출된 단각류 Monocorophium acherusicum의 지연 사망률에 관한 연구)

  • Lee Jung-Suk;Lee Kyu-Tae
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.2 s.49
    • /
    • pp.133-141
    • /
    • 2005
  • 다양한 유해오염물질에 급성 노출된 단각류 Monocorphium acherusicum의 노출 기간 이후에 발생하는 지연 사망(latent mortality)이 반수치사농도(LC5O)산출에 어떤 영향을 미치는 지를 규명하기 위한 일련의 실험이 수행되었다. 본 연구에서는 실험생물을 카드뮴, 구리, 수은과 같은 중금속, tributyltin(TBT), 암모니아 그리고 방향성탄화수소인 phenanthrene에 각각 96시간 동안 노출시킨 후 깨끗한 해수에 옮겨 다시 6일 동안 배양하면서 사망률을 조사하였다. 실험결과 구리, TBT, 암모니아, phenanthrene과 같은 물질에 노출된 M. acherusicum의 사망률은 노출이 끝난 이후에도 계속적으로 증가하는 지연 사망이 관찰되었으며, 이에 따라 기존의 방법_으로 산출된 96-h LC50보다 지연 사망을 고려한 새로운 LC50이 크게 낮아지는 경향이 관찰되었다. 지연사망률을 고려하지 않은 기존의 독성시험 결과는 지연 사망의 영향을 반영하지 못하므로 실제 현장에서 발생할 수 있는 오염물질의 영향을 과소평가 할 가능성이 있다. 따라서 지연 사망률에 대한 고려는 실제 현장 개체군에 대한 유해오염물질의 영향을 보다 정화하게 예측하는 데에 활용될 수 있을 것이다.

Application of Indigenous Benthic Amphipods as Sediment Toxicity Testing Organisms

  • Lee, Jung-Suk;Lee, Kyu-Tae;Kim, Dong-Hoon;Kim, Chao-Kook;Lee, Jong-Hyeon;Park, Kun-Ho
    • Ocean Science Journal
    • /
    • v.40 no.1
    • /
    • pp.17-24
    • /
    • 2005
  • A series of experiments were conducted to develop standard test organisms and test protocols for measuring sediment toxicity using candidate amphipods such as Mandibulophoxus mai, Monocorophium acherusicum, Haustorioides indivisus, and Haustorioides koreanus, which are indigenous to Korea. The relevant association of test species with sediment substrates was one of the important factors in sediment bioassay. The indigenous amphipods M mai and M. acherusicum were well associated with test sediments when they were exposed to various sediment substrates from sand to mud. The tolerant limits to various physico-chemical factors affecting bioassay results such as temperature, salinity and ammonia, as well as sensitivities to reference toxicant and contaminated sediments, were investigated using M. mai and M. acherusicum in the present study. These amphipods were tolerant to relatively wide ranges of salinity $(10{\sim}30\;psu)$ and ammonia (<50 ppm), and displayed relevant sensitivity to temperature as well. They are more sensitive to Cd, the reference toxicant, when compared to the standard test species used in other countries. Field-sediment toxicity tests revealed that M. mai would be more sensitive to sediment-associated pollutants than M. acherusicum, while the sensitivity of M. acherusicum was comparable to that of Leptocheirus plumulosus, which has been used as a standard test species in the United States of America. Overall results of this first attempt to develop an amphipod sediment toxicity test protocol in Korea indicated that M. mai and M. acherusicum would be applicable in the toxicity assessment of contaminated sediments, following the further evaluation encompassing various ecological and toxicological studies in addition to test method standardization.

Influence of Temperature on the Survival, Growth and Sensitivity of Benthic Amphipods, Mandibulophoxus mai and Monocorophium acherusicum (국내산저서단각류 Mandibulophoxus mai와 Monocorophium acherusicum의 생존, 성장 및 민감도에 대한 온도의 영향)

  • Lee Kyu-Tae;Lee Jung-Suk;Kim Dong-Hoon;Kim Chan-Kook;Park Kun-Ho;Kang Seong-Gil;Park Gyung-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 2005
  • A series of experiments was conducted to evaluate the effects of temperature on the survival, growth and sensitivity of the benthic amphipods, Mandibuluphoxus mai and Monocnrophium acherusicum, which have been recently developed as new sediment toxicity testing species in Korea. The biological performance for each amphipod species was determined by the survival and growth rates at different water temperatures. The influence of temperature on the sensitivity to reference toxicant, Cd, was determined by the comparison of survival rates of amphipods exposed to control and Cd-spiked seawater at different temperatures. Temperature significantly influenced on the survival, growth and Cd sensitivity of both amphipods. Tolerable ranges of temperature for the >80% individuals of both M. mai and M. acherusicum with sediment substrates were mostly overlapped (13 to 22℃). The daily growth rates of M. mai and M. acherkisicum increased proportionally with temperature up to 20℃ and 25℃. respectively. Similarly, the sensitivities of M. mai and M. acheyusicum to Cd increased with temperature up to 20℃ and 15℃, respectively. Overall results showed that temperature is a substantially important factor potentially influencing the results of lethal and sublethal bioassays using the amphipods. Therefore, defining the adequate ranges of experimental temperature for the toxicity testing species is the pre-requisite for the development of standardized bioassay protocols.

  • PDF

Acute toxicity of antifouling agents(TBT, Sea-nine, Cu-pyrithione and Zn-pyrithione) to rockfish Sebastes schlegeli and amphipod Monocorophium acherusicum (방오도료(TBT, Sea-nine, Cu-pyrithione과 Zn-pyrithione)의 조피볼락 Sebastes schlegeli 과 단각류 Monocorophium acherusicum에 대한 급성독성 비교)

  • Park Kun-Ho;Lee Kyu-Tae;Lee Jung-Suk;Han Kyung-Nam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Since the usage of tributyltin(TBT) has been banned, many chemicals including Sea-Nine 211, Cu-pyrithione, and Zn-pyrithione were developed to use as antifouling agents for ships and coastal structures. However, the toxicity of these antifouling chemicals have not been systematically evaluated in ecotoxicological and biological studies. In this study, we investigated the effect of four antifouling substances on survival of estuarine rockfish, Sebastes schlegeli and amphipod, Monocorophium acherusicum. Survival of S. schlegeli and M. acherusicum during the 96-h exposure period were used to estimate the median lethal concentrations(LC50s) of test chemicals for each test species. Among antifouling agents, Cu-pyrithione($56{\mu}g{\cdot}1^{-1}$;96-h LC50) was most toxic to S. schlegeli, followed by $TBT(73{\mu}g{\cdot}1^{-1}),\;Sea-Nine(184{\mu}g{\cdot}1^{-1})\;and\;Zn-pyrithione(l707{\mu}g{\cdot}1^{-1})$, while TBT($26{\mu}g{\cdot}1^{-1}$) was most toxic to M. acherusicum followed by Sea-Nine($49{\mu}g{\cdot}1^{-1}$), Cu-pyrithione($119{\mu}g{\cdot}1^{-1}$) and Zn-pyrithione($334{\mu}g{\cdot}1^{-1}$). Effect concentrations of the antifouling chemicals estimated in this study can be used when assessing the potential risks of these substances, of which usage is increasing in the coastal environment.

  • PDF

Development of Sediment Toxicity Test Protocols using Korean Indigenous Marine Benthic Amphipods (국내산 저서 단각류를 이용한 퇴적물 독성시험법 개발에 관한 연구)

  • Lee, Jung-Suk;Lee, Seung-Min;Park, Gyung-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.2
    • /
    • pp.147-155
    • /
    • 2008
  • A series of experiments were conducted to find standard test organisms and to develop test protocols for sediment toxicity tests using indigenous amphipods inhabited in Korean coastal environments. The indigenous amphipods Mandibulophoxus mai and Monocorophium acherusicum were well associated with various sediment substrates from sand to mud. The tolerance limits to various physico-chemical factors affecting bioassay results such as temperature, salinity and total ammonium as well as the sensitivities to contaminants in water and sediments were investigated using M. mai and M. acherusicum in the present study. These amphipods were tolerable to the adequate ranges of salinity ($10{\sim}30\;psu$), temperature ($10{\sim}25^{\circ}C$) and ammonia (<50 ppm). They have relevant sensitivities to the reference toxicants, dissolved cadmium as well as other metals and organic pollutants, when compared to the standard test species used in other countries. Field-sediment toxicity tests revealed that M. mai would be more sensitive to sediment-associated pollutants than M. acherusicum, while the sensitivity of M. acherusicum was comparable to those of other sediment test species in other countries. Overall results of this first attempt to develop an amphipod sediment toxicity test protocol in Korea indicated that M. mai and M. acherusicum should be applicable in the toxicity assessment of contaminated sediments, following the further evaluation encompassing various ecological and toxicological evaluation and the standardization of test method.

Chronic Effect Exposed to Carbon Dioxide in Benthic Environment with Marine Invertebrates Copepod(Tisbe sp.) and Amphipod(Monocorophium acherusicum) (저서환경에서 이산화탄소 노출에 따른 국내산 해산무척추동물 요각류(Tisbe sp.)와 단각류(Monocorophium acherusicum)의 만성영향)

  • Moon, Seong-Dae;Choi, Tae Seob;Sung, Chan-Gyoung;Lee, Jung-Suk;Park, Young-Gyu;Kang, Seong-Gil
    • Journal of Environmental Science International
    • /
    • v.22 no.3
    • /
    • pp.359-369
    • /
    • 2013
  • Chronic effects such as reproduction and population dynamics with elevated $CO_2$ concentration were evaluated using two representative marine benthic species, copepod (Tisbe sp.) and amphipod (Monocorophium acherusicum) adopting long-term exposure. Juvenile copepod and amphipod individuals were cultivated in the seawater equilibrated with control air (0.395 mmol $CO_2$/air mol) and high $CO_2$ air having 0.998, to 3.03, 10.3, and 30.1 mmol $CO_2$/air mol during 20 and 46 days, respectively. After the exposure period, the number of benthic invertebrate was counted with separate larval and juvenile stage such as naupliar, copepodid and adult for copepod, or neonate and adult for amphipod, respectively. The individual number of both test species at each life-stage was significantly decreased in seawater with 10.3 mmol $CO_2$/air mol or higher. Recently, the technology of marine $CO_2$ sequestration has been developed for the reduction of $CO_2$ emission, which may cause climate change. However, under various scenarios of $CO_2$ leaks during the injection process or sequestrated $CO_2$ in marine geological structure, the potential risk to organism including various invertebrates can be expected to exposure. So the results of this study suggested that the detailed consideration on the adverse effect with marine ecosystem can be prerequisite for the marine $CO_2$ sequestration projects.

Establishment of Standard Methods for Marine Ecotoxicological Test (해양생태독성평가를 위한 표준시험방법 개발에 관한 연구)

  • Park, Gyung-Soo;Lee, Seung-Min;Han, Tae-Jun;Lee, Jung-Suk
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.2
    • /
    • pp.106-111
    • /
    • 2008
  • Six standard methods for marine ecotoxicological tests were established(or applicated) using marine decomposer, primary producers and consumers. Development processes referred to the standard methods established by USEPA(United States Environmental Protection Agency), international organizations and European methods. However, the standard test species were selected among the domestic species generally found in the Korean waters and sediments. The test methods provide the culture/maintenance of test species, test methods, reproducibility and quality acceptance criteria etc. A total of nine test species were designated including bioluminescent bacteria(Vibrio fischeri), diatom(Skeletonema costatum), seaweed(Ulva pertusa), rotifer(Brachionus plicatilis), benthic copepod(Tigriopus japonicus), benthic amphipods(Mandibulophoxus mai, Monocorophium acherusicum), and fishes(Oryzias latipes, Paralichthys olivaceus). These test species represent the decomposer, primary producer and consumers in marine trophic system in Korean coastal ecosystems, and we recommend the "battery test" including at least one species from the each trophic level for marine ecotoxicological test.

Biological Toxicity Assessment of Sediment at an Ocean Dumping Site in Korea (폐기물 배출해역 퇴적물의 생물학적 독성평가 연구)

  • Seok, Hyeong Ju;Kim, Young Ryun;Kim, Tae Won;Hwang, Choul-Hee;Son, Min Ho;Choi, Ki-young;Kim, Chang-joon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • The effect of sediments in a waste dumping area on marine organisms was evaluated using sediment toxicity tests with a benthic amphipod (Monocorophium acherusicum) and bioluminescent bacterium (Vibrio fischeri) in accordance with the Korean Standard Method for Marine Wastes (KSMMW). Nine sites in the East Sea-Byeong, East Sea-Jeong, and Yellow Sea-Byeong areas were sampled from 2016 to 2019. The test results showed that the relative average survival rate (benthic amphipods) and relative luminescence inhibition rate (luminescent bacteria) were below 30%, which were judged to be "non-toxic." However, in the t-test, a total of 12 benthic amphipod samples (6, 1, 1, and 4 in 2016, 2017, 2018, and 2019, respectively) were significantly different (p<0.05) from the control samples. To identify the source of toxicity on benthic amphipods, a simple linear regression analysis was performed between the levels of eight heavy metals (Cr, As, Ni, Cd, Cu, Pb, Zn, and Hg) in sediments and the relative average survival rate. The results indicated that Cr had the highest contribution to the toxicity of benthic amphipods (p = 0.000, R2 = 0.355). In addition, Cr was detected at the highest concentration at the DB-85 station and exceeded the Marine Environment Standards every year. Although the sediments were determined as "not toxic" according to the ecotoxicity criteria of the KSMMW, the results of the statistical significance tests and toxicity identification evaluation indicated that the toxic effect was not acceptable. Therefore, revising the criteria for determining the toxic effect by deriving a reference value through quantitative risk assessment using species sensitivity distribution curves is necessary in the future.

A Study on the Eco-Toxicity of Silicone-Based Antifoaming Agents Discharging into Marine Environments (해양으로 배출되는 실리콘계 소포제의 생태독성 연구)

  • Kim, Tae Won;Kim, Young Ryun;Park, MiOk;Jeon, MiHae;Son, Min Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.81-88
    • /
    • 2019
  • In order to understand the effects of the main components of antifoaming agents on the marine benthic ecosystem when silicone-based antifoaming agents are discharged into marine environments, eco-toxicity testing was performed on silicone and alcohol-based antifoaming agent by using benthic amphipod (Monocorophium acherusicum) and luminescent bacteria (Vibrio fischeri). The toxic effects of Polydimethylsiloxane (PDMS) as a main component of silicone-based antifoaming agents on aquatic organisms were also researched. In the results of the eco-toxicity test, luminescent bacteria showed a maximum of 9 times more toxic effects than benthic amphipod for alcohol-based antifoaming agents, and silicone-based antifoaming agents showed a maximum of 400 times more toxic effects than alcohol-based. The $LC_{50}$ and $EC_{50}$ values of PDMS ranged from 10 to $44,500{\mu}g/L$ in phytoplankton, invertebrate, and fish. In the results of applying PBT (P: persistency, B: bioaccumulation, T: toxicity) characteristics as an index showing the qualitative characteristics of PDMS, persistency (P) and bioaccumulation (B) were confirmed. Thus, when PDMS is discharged to marine environments, it could accumulate in the upper trophic level through bioaccumulation and the food chain, which could have negative effects on benthic organisms. The results of this study may be used for objective and scientific risk assessment, considering the major components of antifoaming agents when investigating the effects of various discharged antifoaming agents in marine ecosystem.