• Title/Summary/Keyword: Monoclinic zirconia

Search Result 106, Processing Time 0.028 seconds

Coating behavior of zirconia film fabricated by granule spray in vacuum (상온진공 과립분사에 의한 지르코니아 필름의 코팅거동)

  • Tungalaltamir, Ochirkhuyag;Kang, Young-Lim;Park, Woon-Ik;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.205-211
    • /
    • 2022
  • The Granule Spray in Vacuum (GSV) process is a method of forming a dense nanostructured ceramic coating film by spraying ceramic granules on a substrate at room temperature in a vacuum. In the Granule Spray, the granules made by agglomerating particles with the size from submicrometer to micrometer can be sprayed into the substrate. Once the granules were squashed upon collision with the substrate, they become several dozens of nanometer-sized crystals in vacuum process. The zirconia of the monoclinic phase transform into tetragonal phase at 1150℃. At this time, its volume is changed by about 6.5 %. For this reason, it is widely held that it is difficult to acquire a compact of monoclinic zirconia sinter. In this study, the effect of particle treatment temperature and standoff distance on the substrate of zirconia granules were investigated in GSV. Also, particle treatment temperature, standoff distance, coating efficiency, and microstructure of the film were considered in forming the monoclinic zirconia coating film in GSV without any heating process. The deposited films exhibited monoclinic zirconia phase without any other detectable phase by X-ray diffractometer (XRD).

Effect of sintering programs and surface treatments on monolithic zirconia

  • Seren Nur Dokuzlu ;Meryem Gulce Subasi
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.1
    • /
    • pp.25-37
    • /
    • 2024
  • PURPOSE. To investigate the effect of sintering programs and surface treatments on surface properties, phase transformation and flexural strength of monolithic zirconia. MATERIALS AND METHODS. Zirconia specimens were sintered using three distinct sintering programs [classic (C), speed (S), and superspeed (SS)] (n = 56, each). One sample from each group underwent scanning electron microscopy (SEM) and grain size analysis following sintering. Remaining samples were divided into five subgroups (n = 11) based on the surface treatments: control (CL), polish (P), glaze (G), grind + polish (GP), and grind + glaze (GG). One sample from each subgroup underwent SEM analysis. Remaining samples were thermally aged. Monoclinic phase volume, surface roughness, and three-point flexural strength were measured. Monoclinic phase volume and surface roughness were analyzed by Kruskal-Wallis and Dunn tests. Flexural strength was analyzed by two-way ANOVA and Weibull analysis. The relationships among the groups were analyzed using Spearman's correlation analysis. RESULTS. Sintering program, surface treatment, and sintering × surface treatment (P ≤ .010) affected the monoclinic phase volume, whereas the type of surface treatment and sintering × surface treatment affected the surface roughness (P < .001). Type of sintering program or surface treatment did not affect the flexural strength. Weibull analysis revealed no significant differences between the m and σo values. Monoclinic phase volume was positively correlated with surface roughness in the SGG and SSP groups. CONCLUSION. After sintering monolithic zirconia in each of the three sintering programs, each of the surface treatments can be used. However, for surface quality and aging resistance, G or GG can be recommended as a surface finishing method.

Mechanical properties of zirconia after different surface treatments and repeated firings

  • Subasi, Meryem Gulce;Demir, Necla;Kara, Ozlem;Ozturk, A. Nilgun;Ozel, Faruk
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.462-467
    • /
    • 2014
  • PURPOSE. This study investigated the influence of surface conditioning procedures and repeated firings on monoclinic content and strength of zirconia before cementation. MATERIALS AND METHODS. Sintered bar-shaped zirconia specimens were subjected to no surface treatment (control), air abrasion, or grinding (n=21). Their roughness was evaluated using a profilometer, and microscope analysis was performed on one specimen of each group. Then, 2 or 10 repeated firings (n=10) were executed, the monoclinic content of specimens was analyzed by X-ray diffraction, and a three-point flexural strength test was performed. Surface roughness values were compared using one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests, the monoclinic content values were tested using Kruskal-Wallis and Mann-Whitney U tests, and the flexural strength values were tested using two-way ANOVA and Tukey HSD tests (P=.05). Spearman's correlation test was performed to define relationships among measured parameters. RESULTS. Surface-treated specimens were rougher than untreated specimens and had a higher monoclinic content (P<.005), and the relationship between roughness and monoclinic content was significant (P<.000). Neither surface treatment nor firing significantly affected the flexural strength, but Weibull analysis showed that for the air-abraded samples the characteristic strength was significantly lower after the $10^{th}$ firing than after the $2^{nd}$ firing. CONCLUSION. After firing, a negligible amount of monoclinic content remained on the zirconia surfaces, and rougher surfaces had higher monoclinic contents than untreated surfaces. Multiple firings could be performed if necessary, but the fracture probability could increase after multiple firings for rougher surfaces.

Effect on Mechanical Properties of 3Y-TZP; (I) Addition of Monoclinic Zirconia (3Y-TZP의 기계적 물성에 미치는 영향: (I) 단사정지르코니아의 첨가)

  • Yang, Seong-Koo;Bae, Kyung-Man;Cho, Bum-Rae;Kang, Jong-Bong
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.411-416
    • /
    • 2005
  • Y-TZP(Yttria-stabilized Tetragonal Zirconia Polycrystal) ceramics are of great interest as engineering and structural materials due to their excellent mechanical properties arising from transformation toughening, it is also reported that the 3Y-TZP($3 mol\%$ Yttria-stabilized Tetragonal Zirconia Polycrystal) has the best mechanical properties in Y-TZP ceramics. But to use widely for engineering and structural materials, it remains an important challenge to be able to improve its fracture toughness. In order to produce the 3Y- TZP ceramics showing much better mechanical properties, milling method adding monoclinic zirconia to 3Y-TZP was adopted and the resultant mechanical properties containing apparent density and fracture toughness were measured by using proper techniques. Experimental results showed that the 3Y-TZP specimen containing $33 wt\%$ of monoclinic zirconia, which was sintered at $1450^{\circ}C$, has the highest fracture toughness value of $11.38 MPa{\cdot}m^{1/2}$ which is three times higher than that of normal 3Y-TZP ceramics.

Synthesis and Characterization of High Surface Area of Zirconia: Effect of pH (고비표면적 지르코니움 산화물의 제조 및 특성 분석: pH 영향)

  • Jeong, Ye-Seul;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.133-141
    • /
    • 2019
  • High specific surface area zirconia with acid-basic property was synthesized by precipitation using reflux method or hydrothermal synthesis method using ammonium hydroxide solution as precipitant in the range of pH of Zr solution from 2 to 10. The prepared zirconia was characterized by the nitrogen adsorption, X-ray diffraction (XRD), isopropanol temperature programmed desorption (IPA-TPD), scanning electron microscopy and X-ray photoelectron spectroscopy, and the catalytic activity in the IPA decomposition reaction was correlated with the acid-basic properties. When using reflux method, high pH of Zr solution was required to obtain high fraction of tetragonal zirconia, and pure tetragonal zirconia was possible at pH 9 or higher. High pH was required to obtain high specific surface area zirconia, and the hydrous zirconia synthesized at pH 10 had high specific surface area zirconia of $260m^2g^{-1}$ even after calcination at $600^{\circ}C$. However, hydrothermal synthesis with high pressure under the same conditions resulted in very low specific surface area below $40m^2g^{-1}$ and monoclinic phase zirconia was synthesized. High pH of the solution was required to obtain high specific surface area tetragonal phase zirconia. In hydrothermal synthesis requiring high pressure, monoclinic zirconia was produced irrespective of the pH of the solution, and the specific surface area was relatively low. Zirconia with high specific surface area and tetragonal phase was predominantly acidic compared to basicity and only propylene, which was observed as selective dehydration reaction in IPA decomposition reaction, was produced.

Phase transition of Zirconia by surface treatments (지르코니아 표면 가공에 따른 상변이)

  • Lee, Jung-Soo;Shim, Jeong-Seok;Jung, Hyung-Ho
    • Journal of Technologic Dentistry
    • /
    • v.32 no.2
    • /
    • pp.57-63
    • /
    • 2010
  • Purpose : This study aimed to find out the effects of treatments on the surface of Zirconia. Methods : To this end, we selected six treatments that have been used widely: steam cleaning, 2bar & 6bar sand blasting, grinding by green stone point, grinding by diamond bur, and grinding by diamond bur with water spray. Results : The results of our study showed that monoclinic rate increased from all six treatments. Monoclinic rate varied by treatments, ranged from 0.6% (steam cleaning) to 6.5% (6bar sand blasting). These values from all six treatments were below ISO 13356 standard, which is 25%. Also, we found that two treatments (green stone point and diamond bur) increased roughness of surface of Zirconia. Conclusion : This study concluded that phase changes of Zirconia were not significant by using six treatments we employed.

Surface Characteristics of the Ground Zirconia (연삭된 지르코니아의 표면 특성)

  • Kim, Sa-Hak
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.323-329
    • /
    • 2011
  • Purpose: This study was conducted to examine the phase transition according to the zirconia surface treatment. Methods: The specimens were divided to four groups. The first group was sintered at $1,500^{\circ}C$ and ground; the second group was sintered at $700^{\circ}C$, ground, and sintered at $1,500^{\circ}C$; the third group was sintered at $1,500^{\circ}C$, ground, and $110{\mu}m$-sandblasted; and the fourth group was sintered at $1,500^{\circ}C$, ground, $110{\mu}m$-sandblasted, treated with 9.5% hydrofluoric acid, and ultrasonic cleaner-washed for two minutes. The monoclinic fractions were measured, and the surface was observed via SEM. Results: The monoclinic fraction was $0.13{\pm}0.19%$ in the control group Zr1, $1.91{\pm}0.15%$ in the experimental group Zr2, $7.71{\pm}0.34%$ in Zr3, and $8.39{\pm}0.25%$ in Zr4. On the surface, the phase transition hardly occurred in the control group Zr1, but it increasingly occurred in the experimental groups Zr3 and Zr4. Conclusion: The monoclinic fraction was high in the experimental groups Zr3 and Zr4. The phase transition did not occur in the control group, but increasingly occurred in the experimental groups.

Effects of Mechanically Activated Milling and Calcination Process on the Phase Stability and Particle Morphology of Monoclinic Zirconia Synthesized by Hydrolysis of ZrOCl2 Solution

  • Lee, Young-Geun;Ur, Soon-Chul;Mahmud, Iqbal;Yoon, Man-Soon
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.543-549
    • /
    • 2013
  • The purpose of this paper was to investigate the effect of a high-energy milling (HEM) process on the particle morphology and the correlation between a thermal treatment and tetragonal/monoclinic nanostructured zirconia powders obtained by a precipitation process. To eliminate chloride residue ions from hydrous zirconia, a modified washing method was used. It was found that the used washing method was effective in removing the chloride from the precipitated gel. In order to investigate the effect of a pre-milling process on the particle morphology of the precipitate, dried $Zr(OH)_4$ was milled using a HEM machine with distilled water. The particle size of the $Zr(OH)_4$ powder exposed to HEM reduced to 100~150 nm, whereas that of fresh $Zr(OH)_4$ powder without a pre-milling process had a large and irregular size of 100 nm~1.5 ${\mu}m$. Additionally, modified heat treatment process was proposed to achieve nano-sized zirconia having a pure monoclinic phase. It was evident that two-step calcining process was effective in perfectly eliminating the tetragonal phase, having a small average particle of ~100 nm with good uniformity compared to the sample calcined by a single-step process, showing a large average particle size of ~300 nm with an irregular particle shape and a broad particle size distribution. The modified method is considered to be a promising process for nano-sized zirconia having a fully monoclinic phase.

Direct Observation on the Low Temperature Degradation Due to Surface Treatment in Y-TZP (Y-TZP에서 표면 처리에 따른 저온열화 거동의 직접적 관찰)

  • Chung, Tai-Joo;Kim, Hye-Sung
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.197-202
    • /
    • 2010
  • Low temperature degradation behavior in yttria stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics was microscopically observed from the phase contrast between monoclinic surface and tetragonal matrix. The degradation behavior was dependent on the surface treatment of sintered Y-TZP, even if the sintering history is same. In the mirror polished specimen, the monoclinic layer appeared in a uniform thickness from the surface. On the contrary, for the specimen with coarse scratch, the thickness of degraded surface was more than double especially from the coarse scratch. Since the scratch results in local deformation, the residual stress should be induced around the scratch. With the transformation from tetragonal to monoclinic, the volume expansion exerts a stress on a neighboring grains and promotes a successive phase transformation. Such a autocatalytic effect can be triggered from the part of coarse scratch.

Heat Treatment Effects on the Phase Evolutions of Partially Stabilized Grade Zirconia Plasma Sprayed Coatings

  • Park, Han-Shin;Kim, Hyung-Jun;Lee, Chang-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.486-493
    • /
    • 2001
  • Partially stabilized zirconia (PSZ) is an attractive material for thermal barrier coating. Zirconia exists in three crystallographic phases: cubic, tetragonal and monoclinic. Especially, the phase transformation of tetragonal phase to monoclinic phase accompanies significant volume expansion, so this transition generally results in cracking and contributes to the failure of the TBC system. Both the plasma sprayed ZrO$_2$-8Y$_2$O$_3$ (YSZ) coat and the ZrO$_2$,-25CeO$_2$,-2.5Y$_2$O$_3$ (CYSZ) coat are isothermally heat -treated at 130$0^{\circ}C$ and 150$0^{\circ}C$ for 100hr and cooled at different cooling rates. The monoclinic phase is not discovered in all the CYSZ annealed at 130$0^{\circ}C$ and 150$0^{\circ}C$. In the 150$0^{\circ}C$ heat-treated specimens, the YSZ contains some monoclinic phase while none exists in the 130$0^{\circ}C$ heat-treated YSZ coat. For the YSZ, the different phase transformation behaviors at the two temperatures are due to the stabilizer concentration of high temperature phases and grain growth. For the YSZ with 150$0^{\circ}C$-100hr annealing, the amount of monoclinic phase increased with the slower cooling rate. The extra oxygen vacancy, thermal stress, and c to t'phase transformation might suppress the t to m martensitic phase transformation.

  • PDF