• Title/Summary/Keyword: Monoclinic phase

Search Result 219, Processing Time 0.022 seconds

Ionio conductivity of solid solution ceramics in the system of $CaO-Y_{2}O_{3}-ZrO_{2}$ Prepared by SHS

  • Soh, Deawha;Korobova, N.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.211-214
    • /
    • 2001
  • The undesirable phase transformation of zirconium dioxide at high temperatures can be eliminated by stabilization of the cubic phase with an addition of a selected alkaline earth or rare-earth oxide. In this paper the ionic conductivity of cubic solid solutions in the stabilized ZrO$_2$ by CaO-Y$_2$O$_3$ system was examined. The higher ionic conductivity appears to be related to lower activation energy rather than to the number of oxygen vacancies dictated by composition. Those compositions of highest conductivity lie close to the cubic-monoclinic solid-solution phase boundary. Conductivity temperature data are presented that indicate a reversible order-disorder transition for Zr$_2$2-Y$_2$O$_3$cubic solid solutions containing 20 and 25 mole % $Y_2$O$_3$.

  • PDF

Phase Transformation and Mechanical Properties of Reaction Sintered Mullite-Zirconia (Yttria) Composite (반응소결된 물라이트-지르코니아(이트리아) 복합체의 상변태와 기계적 성질에 관한 연구)

  • 오경영;장성도
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.7
    • /
    • pp.549-555
    • /
    • 1991
  • Mullite-zirconia (0∼4 mol% yttria) composites were obtained by In-situ sintering of zircon and alumina mixture, and their mechanical properties were studied in conjuction with microstructure observation. Martensitic transformation temperature (Ms) of zirconia dispersed in the mullite matrix decreased with Y2O3 contents and was about 600$^{\circ}C$ for ZrO2 containing 4 mol% Y2O3. On cooling of this composites, tetragonal to monoclinic phase transformation induced microcracks at the grain boundary of mullite matrix. The microcracks seemed to absorb the fracture energy in stress field during mechanical tests. Therefore, toughening mechanisms of this composite were considered to nucleation and extension of microcrack, and crack deflection mechanism due to the difference of thermal expansion coefficient between matrix and dispersed phase.

  • PDF

Influences of Electrochemical Vapor Deposition Conditions on Growth Rate ad Characteristics of YSZ Thin films(II) (YSZ 박막의 성장속도와 특성에 미치는 전기화학증착의 조건의 영향(II))

  • 박동원;전치훈;김대룡
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.3
    • /
    • pp.355-361
    • /
    • 1996
  • Yttria stabilized zirconia (YSZ) thin films were prepared by the electrochemical vapor deposition (EVD) method on the porous Al2O3 substrates. Y2O3 mol% of thin film was linearly increased with yttrium mole fraction of vapor phase. As yttrium mole fraction(Zyc13=0.18) increased dense and faceted thin films were enhanced. However as the yttrium mole fraction (Zyc13=0.04) decreased porous thin films with monoclinnic phase prevailed. With increasing pressure difference of substrate sides penetration depth decreased porosity and amount of monoclinic phase in the films increased.

  • PDF

Kinetics of Athermal Martensitic Transformation in Yttria Doped Zirconia

  • Pee, Jae-Hwan;Choi, Eui-Seok;Hayakawa, Motozo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.718-721
    • /
    • 2005
  • The high temperature tetragonal phase of zirconia containing $1.40{\~}1.60\;mol\%$ of yttria can be fully retained at room temperature by rapid cooling. The metastable tetragonal phase transforms into the monoclinic phase athermally upon subzero cooling. The transformation exhibited an athermal burst transformation. The effects of yttria content and grain size on the athermal martensitic transformation were studied in detail. The burst temperature linearly decreased with increasing yttria content or decreasing grain size. To consider the distribution of martensite nuclei, the Weibull modulus of the athermal martensitic transformation was evaluated from the distribution of the burst transformation temperature. From the Weibull analysis, the distribution of embryos appears to be more homogeneous than that of the defects responsible for the fracture of similar material.

The Preparation and Thermal Decomposition of the Basic Zirconium Sulfate (Basic Zirconium Sulfate의 제조와 그 열분해 거동)

  • 석상일;정하균;주명희;박도순
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.6
    • /
    • pp.707-712
    • /
    • 1990
  • The basic zirconium sulfate was prepared from ZrOCl2.8H2O and H2SO4 in the 9$0^{\circ}C$ aqueous solution. The pH and amount of unreacted zirconium in the solution that reacton had completed was 0.2 and 10%. As the pH was increased to 1.4 by NH4OH theresulting precipitates were the mixtures of the basic zirconium sulfate and the zirconium hydroxide although the precipitates were recovered completely. The thermal decomposition behavior of this sample has been examined by thermal analysis(TG-DTA), X-ray diffraction study, infrared spectroscopy and sulfur analysis. As a result, it was found that the precipitates have perfectly been decomposed at 85$0^{\circ}C$ accompanying to the release of a molecule of water below 25$0^{\circ}C$ and 85% sulfate at about $600^{\circ}C$. The thermally decomlposed products were initially amorphous phase, which were become metastable tetragonal phase with increment of temperature and finally transformed to the stable monoclinic phase at 100$0^{\circ}C$.

  • PDF

The Equilibrium Model of MoO$_3$ Containing Phases Supported in Silica

  • Lee, Do-Hyun;Ha, Jin-Wook
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.287-289
    • /
    • 2001
  • The morphology of silica supported MoO$_3$ catalysts, which was prepared by impregnation of ammonium heptamolybdate with various weight loadings up to 35 wt%, was studied using x-ray diffraction. In addition to the orthorhombic phase, the behavior of the rarely studied hexagonal phase was characterized. For high loading catalysts, excess ammonium ions present in the monoclinic and triclinic precursors are capable of occupying interstitial sites of microcrystalline MoO$_3$ during moderate temperature calcinations and in doing so enhance the MoO$_3$-SiO$_2$ interaction. This results in a "well dispersed" morphology at high loadings. Sintering at high temperature is due to loss of ammonium from the oxide framework. Ammonia reimpregnation, which leads back to the well dispersed hexagonal phase, may offer a simple regeneration process for spent Mo containing catalysts.

Effect of Grain Size and Heat-treating Atmosphere on the Phase Stability of Y-TZP (입자크기와 열처리 분위기 변화에 따른 Y-TZP에서의 상안정성 변화)

  • Chung, Tai-Joo;Ahn, Seung-Su;Song, Eun-Wha;Oh, Kyung-Sik;Lee, Jong-Sook;Kim, Young-Sik
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.360-365
    • /
    • 2006
  • The phase stability of tetragonal phase in Y-TZP was investigated in terms of the distribution of grain sizes and heat-treating atmosphere. Y-TZP with various grain sizes were prepared using duration time at $1600^{\circ}C$ as experimental parameter. Accumulated grain size distributions were built from the SEM micrographs and the amount of tetragonal phase were measured using XRD. Both results were compared to determine the critical grain size before and after heat-treatment in vacuum. The critical grain size drastically decreased compared with the small increase of average grain size due to the autocatalytic effect which critically affects the tetragonal to monoclinic phase transformation. After heat-treatment in reductive atmosphere critical grain size relatively increased due to the stabilization of tetragonal phase. The formation of oxygen vacancies during heat-treatment was ascribed to the increase of stability.

Oxygen Deficiency, Hydrogen Doping, and Stress Effects on Metal-Insulator Transition in Single-Crystalline Vanadium Dioxide Nanobeams

  • Hong, Ung-Gi;Jang, Seong-Jin;Park, Jong-Bae;Bae, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.424.1-424.1
    • /
    • 2014
  • Vanadium dioxide (VO2) is a strongly correlated oxide exhibiting a first-order metal-insulator transition (MIT) that is accompanied by a structural phase transition from a low temperature monoclinic phase to a high-temperature rutile phase. VO2 has attracted significant attention because of a variety of possible applications based on its ultrafast MIT. Interestingly, the transition nature of VO2 is significantly affected by stress due to doping and/or interaction with a substrate and/or surface tension as well as defects. Accordingly, there have been considerable efforts to understand the influences of such factors on the phase transition and the fundamental mechanisms behind the MIT behavior. Here, we present the influences of oxygen deficiency, hydrogen doping, and substrate-induced stress on MIT phenomena in single-crystalline VO2 nanobeams. Specifically, the work function and the electrical resistance of the VO2 nanobeams change with the compositional variation due to the oxygen-deficiency-related defects. In addition, the VO2 nanobeams during exposure to hydrogen gas exhibit the reduction of transition temperature and the complex phase inhomogenieties arising from both substrate-induced stress and the formation of the hydrogen doping-induced metallic rutile phase.

  • PDF

PHASE TRANSITIONS AND ELECTROCHEMICAL CORROSION BEHAVIORS OF Ti50Ni50-xCux SHAPE MEMORY ALLOYS FOR METALLIC BIOMATERIALS

  • KWANGMIN LEE;SANGHYUN RHO
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1303-1306
    • /
    • 2020
  • TiNi alloys have excellent shape memory properties and corrosion resistance as well as high biocompatibility. This study investigated the effects of copper addition on the phase transitions and electrochemical corrosion behaviors of Ti50Ni50-xCux alloys. TiNi, Ti50Ni47Cu3, Ti50Ni44Cu6, and Ti50Ni41Cu9 alloys were prepared using vacuum arc remelting followed by 4 h homogenization at 950℃. Differential scanning calorimetry and X-ray diffraction analyses were conducted. The corrosion behaviors of the alloys were evaluated using potentiodynamic polarization test in Hank's balanced salt solution at a temperature of 36.5 ± 1℃. The TiNi alloy showed phase transitions from the cubic B2 phase to the monoclinic B19' phase when the alloy was thermally cycled. The addition of copper to the TiNi alloy played a major role in stabilizing the orthorhombic B19 phases during the phase transitions of Ti50Ni50-xCux alloys. The shifts in the corrosion potential toward the positive zone and the low corrosion current density were affected by the amount of Cu added. The corrosion resistance of the TiNi alloy increased with increasing copper content.

Phase Composition and Pore Structure of Sol-Gel Derived Zirconia Nanopowders (Sol-Gel법에 의해 제조된 Zirconia 나노분말의 결정상과 기공특성)

  • Cheong, Chul-Won;Park, Si-Hyun;Song, Ki-Chang;Lee, Hae-Hyoung;Oh, Sang-Chun;Dong, Jin-Keun;Cha, Yong-Youp;Byun, Tae-Gang
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.741-745
    • /
    • 2002
  • Yttria-stabilized zirconia(YSZ) nanopowders were prepared by sol-gel method using zirconium-n-butoxide(ZNB) and yttrium nitrate as precursors. In addition, the effect of water content added during the hydrolysis reaction of ZNB was investigated on the phase composition and pore structure of the product powders. The phase composition of YSZ nanopowders with calcination temperatures showed the same trend, irrespective of $H_2O$ amounts added during the hydrolysis reaction of ZNB. All powders dried at $100^{\circ}C$ were amorphous and transformed to cubic phase at $400^{\circ}C$, which converted to tetragonal phase at $1,000^{\circ}C$. Monoclinic phase also appeared at $1,000^{\circ}C$. The powders showed the mixture of tetragonal and monoclinic phases from $1,000^{\circ}C$ to $1,400^{\circ}C$. The pore size distributions of the dried powders prepared with small amounts of water(less than or equal to $H_2O/ZNB=20$) showed mesopores, while those prepared with large amounts of water(greater than or equal to $H_2O/ZNB=50$) exhibited micropores.