• Title/Summary/Keyword: Monitoring station

Search Result 780, Processing Time 0.037 seconds

A Monitoring Method for Supporting QoS in Next Generation Mobile Communication Networks (차세대 이동통신망의 QoS를 보장하기 위한 모니터링 방법)

  • Lee, Gi-Sung;Lee, Jong-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3680-3686
    • /
    • 2012
  • This research suggests a monitoring method to support QoS of mobile multimedia services effectively based on information gathering. It means a method in which a subscriber's terminal collects information about its current condition and its surrounding base stations, and a base station, through the data collected by monitoring inner or adjacent base station, shares related data and converges, controlling QoS on its own. In other words, as context information of mobile terminal and base station changes, set-up of related functions and QoS mapping is adapted; each function fits into the change, exchanges the process of reorganization, and interacts; these actions go toward to satisfy service continuity.

A Practical Measurement Method of the Occupied Bandwidth for 8-VSB DTV Signal Using Modified ACPR

  • Kim, Young Soo;Lee, Bong Gyou;Song, Kyeongmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3550-3565
    • /
    • 2019
  • This paper proposes a new measurement method for the effective measurement of the 99% occupied bandwidth (OBW) at monitoring stations. Although the OBW measurement of radio signal is recommended by the International Telecommunication Union Radio (ITU-R) with several methods, there still does not exist a clear measurement recommendation or standard for terrestrial DTV signal on-air environment. Modified adjacent channel power ratio (MACPR), which can be applied to 8-VSB (Vestigial Side Band) DTV (Digital Television) signal, is herein defined to verify the results of measurements obtained using the proposed measurement method. MACPR is a proper measuring parameter for determining the measuring area of a monitoring station. From measurement results obtained in real field environment, it has been found that the OBW of 8-VSB DTV signal can be effectively measured in areas where the MACPR value is over 35 dB and when the measurements are repeated more than 600 times in the same reception site. It also has been verified that measured results are within an error range of +/-0.1% compared to results directly obtained at a transmission station. It is expected that the proposed method is able to be employed in order to determine the proper location of monitoring station and provide a reliable OBW measurement procedure for 8-VSB DTV signal on-air environment.

Review of Operation Concept and System Requirements for Shore Remote Control Simulator System for MASS (자율운항선박 육상원격제어 시뮬레이터 시스템 운용개념 및 시스템 요구기능 분석)

  • GONG, In-Young;KIM, Yong-Hwan;KIM, Seong-Moo;YOUN, Ik-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.937-945
    • /
    • 2022
  • Maritime autonomous surface ships (MASS) have a high degree of autonomy and operate autonomously along a planned route. However, when necessary, the shore remote control center(SRCC) can directly intervene in ship operations. In this paper, the operation concept of the simulator system, which can be used to educate and train shore remote control officers, responsible for monitoring the operation of autonomous ships on land and remotely controlling them in case of an emergency, is reviewed. The required functions of the simulator system that enables the operation concept are also reviewed. The major parts of the SRCC simulator system are the monitoring station and control station, which simulate the functions of monitoring the operation status of multiple MASS and the functions of the remote operation of MASS in the case of emergency, respectively. Various units to simulate the operation of MASS and traf ic ships and various objects around the MASS are included in the simulator system. The instructor operation station is the central part of the simulator system that integrates and controls the unit systems. Functionally, as conditions under which SRCC is allowed to remotely intervene in the operation of MASS, the emergency situation for remote control (ESRC) has been defined. Moreover, the required functions to cope with these ESRC conditions have been included in the simulator system requirements.

WiSeMote: a novel high fidelity wireless sensor network for structural health monitoring

  • Hoover, Davis P.;Bilbao, Argenis;Rice, Jennifer A.
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.271-298
    • /
    • 2012
  • Researchers have made significant progress in recent years towards realizing effective structural health monitoring (SHM) utilizing wireless smart sensor networks (WSSNs). These efforts have focused on improving the performance and robustness of such networks to achieve high quality data acquisition and distributed, in-network processing. One of the primary challenges still facing the use of smart sensors for long-term monitoring deployments is their limited power resources. Periodically accessing the sensor nodes to change batteries is not feasible or economical in many deployment cases. While energy harvesting techniques show promise for prolonging unattended network life, low power design and operation are still critically important. This research presents the WiSeMote: a new, fully integrated ultra-low power wireless smart sensor node and a flexible base station, both designed for long-term SHM deployments. The power consumption of the sensor nodes and base station has been minimized through careful hardware selection and the implementation of power-aware network software, without sacrificing flexibility and functionality.

Iterative damage index method for structural health monitoring

  • You, Taesun;Gardoni, Paolo;Hurlebaus, Stefan
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.1
    • /
    • pp.89-110
    • /
    • 2014
  • Structural Health Monitoring (SHM) is an effective alternative to conventional inspections which are time-consuming and subjective. SHM can detect damage early and reduce maintenance cost and thereby help reduce the likelihood of catastrophic structural events to infrastructure such as bridges. After reviewing the Damage Index Method (DIM), an Iterative Damage Index Method (IDIM) is proposed to improve the accuracy of damage detection. These two damage detection techniques are compared based on damage on two structures, a simply supported beam and a pedestrian bridge. Compared to the traditional damage detection algorithm, the proposed IDIM is shown to be less arbitrary and more accurate.

A New Moving Mobile Base Station (MMBS) Scheme for Low Power RMIMS Wireless System (PARTI: MMBS general issues, clystering and signalling Procedures) (저전력 RMIMS 무선 터미널을 위한 새로운 움직이는 이동 기지국 시스템 구조 (1부 : MMBS 일반사항, 클러스터링 및 신호절차))

  • 박수열;고윤호;유상조;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12B
    • /
    • pp.2298-2319
    • /
    • 1999
  • In this paper, we propose a new moving mobile base station (MMBS) scheme for very low power and micro-size RMIMS (radio-interfaced micro information monitoring system) terminals. RMIMS terminals can be used in various application service areas such as pollution monitoring, environment surveillance, traffic monitoring, emergency monitoring (e.g., building, bridge, railroad breakdown), security monitoring (e.g., theft, alarm) and military application. For these applications based on wireless transmission technologies, sensor type RMIMS terminals must satisfy low cost and low power design (e.g., solar power, life limited battery) requirement. In RMIMS terminal design, this low power requirement limits transmission range of uplink or reverse link and means small cell size. Also these applications using RMIMS terminals may have a little bit non real-time traffic characteristic and low scattering density in service area.

  • PDF

Development Approach of Fault Detection Algorithm for RNSS Monitoring Station (차세대 RNSS 감시국을 위한 고장 검출 알고리즘 개발 방안)

  • Da-nim, Jung;Soo-min Lee;Chan-hee Lee;Eui-ho Kim;Heon-ho Choi
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • Global navigation satellite system (GNSS) providing position, navigation and timing (PNT) services consist of satellite, ground, and user systems. Monitoring stations, a key element of the ground segment, play a crucial role in continuously collecting satellite navigation signals for service provision and fault detection. These stations detect anomalies such as threats to the signal-in-space (SIS) of satellites, receiver issues, and local threats. They deliver received data and detection results to the master station. This paper introduces the main monitoring algorithms and measurement pre-processing processes for quality assessment and fault detection of received satellite signals in current satellite navigation system monitoring stations. Furthermore, it proposes a strategy for the development of components, architecture, and algorithms for the new regional navigation satellite system (RNSS) monitoring stations.