• Title/Summary/Keyword: Monitoring and Controlling

Search Result 505, Processing Time 0.028 seconds

Research on Vehicle Diagnostic and Monitoring technology Using WiBro Portable Device (와이브로 휴대기기를 사용한 차량진단 및 모니터링 기술에 관한 연구)

  • Ryoo, Hee-Soo;Won, Yong-Gwan;Park, Kwon-Chul;Ahn, Yong-Beom
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.17-26
    • /
    • 2010
  • This is concerned with the technology to monitor the vehicle operation, failure and disorder by using WiBro portable device. More precisely, the technology makes it possible that the information collection device is connected to both ECU(Electronic Control Unit) which is the device for controlling engine, transmission, brake, air-bag, etc that are connected to in-vehicle network and OBD-II connector that is for data collection from various sensors. In addition, with a WiBro portable device (cell phone, PDA, PMP, UMPC, etc). equipped with a vehicle diagnostic programs, information for operation, failure and malfunction can be obtained and analyzed in real-time, and alarm is alerted when the vehicle is in abnormal status, which makes the early reactions to the status. Furthermore, the collected data can be sent through WiBro network to the server managed by the company specialized in managing the vehicles, thus the technology could help the drivers who have less knowledge about their auto-vehicles have safe and economic driving. There is always a possibility of malfunction due to various types of noise that are caused by wring-harness when the device is wired-connected. In this research, in order to overcome this problem, we propose a system configuration that can do monitoring and diagnosis with a device for collecting data from vehicle and a personal WiBro device. Also, we performed research on data acquisition and interlock for the system defined by the definition for information and data sharing platform.

A study on the osteoblast differentiation using osteocalcin gene promoter controlling luciferase expression (리포터유전자를 이용한 조골세포 분화정도에 관한 연구)

  • Kim, Kyoung-Hwa;Park, Yoon-Jeong;Lee, Yong-Moo;Han, Jung-Suk;Lee, Dong-Soo;Lee, Seung-Jin;Chung, Chong-Pyoung;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.4
    • /
    • pp.839-847
    • /
    • 2006
  • The aim of this study is to monitor reporter gene expression under osteocalcin gene promoter, using a real-time molecular imaging system, as tool to investigate osteoblast differentiation. The promoter region of mouse osteocalcin gene 2 (mOG2), the best-characterized osteoblast-specific gene, was inserted in promoterless luciferase reporter vector. Expression of reporter gene was confirmed and relationship between the reporter gene expression and osteoblastic differentiation was evaluated. Gene expression according to osteoblstic differentiation on biomaterials, utilizing a real-time molecular imaging system, was monitored. Luciferase was expressed at the only cells transduced with pGL4/mOGP and the level of expression was statistically higher at cells cultured in mineralization medium than cells in growth medium. CCCD camera detected the luciferase expression and was visible differentiation-dependent intensity of luminescence. The cells produced osteocalcin with time-dependent increment in BMP-2 treated cells and there was difference between BMP-2 treated cells and untreated cells at 14days. There was difference at the level of luciferase expression under pGL4/mOGP between BMP-2 treated cells and untreated cells at 3days. CCCD camera detected the luciferase expression at cells transduced with pGL4/mOGP on Ti disc and was visible differentiation-dependent intensity of luminescence This study shows that 1) expression of luciferase is regulated by the mouse OC promoter, 2) the CCCD detection system is a reliable quantitative gene detection tool for the osteoblast differentiation, 3) the dynamics of mouse OC promoter regulation during osteoblast differentiation is achieved in real time and quantitatively on biomaterial. The present system is a very reliable system for monitoring of osteoblast differentiation in real time and may be used for monitoring the effects of growth factors, drug, cytokines and biomaterials on osteoblast differentiation in animal.

IoT Based Real-Time Indoor Air Quality Monitoring Platform for a Ventilation System (청정환기장치 최적제어를 위한 IoT 기반 실시간 공기질 모니터링 플랫폼 구현)

  • Uprety, Sudan Prasad;Kim, Yoosin
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.95-104
    • /
    • 2020
  • In this paper, we propose the real time indoor air quality monitoring and controlling platform on cloud using IoT sensor data such as PM10, PM2.5, CO2, VOCs, temperature, and humidity which has direct or indirect impact to indoor air quality. The system is connected to air ventilator to manage and optimize the indoor air quality. The proposed system has three main parts; First, IoT data collection service to measure, and collect indoor air quality in real time from IoT sensor network, Second, Big data processing pipeline to process and store the collected data on cloud platform and Finally, Big data analysis and visualization service to give real time insight of indoor air quality on mobile and web application. For the implication of the proposed system, IoT sensor kits are installed on three different public day care center where the indoor pollution can cause serious impact to the health and education of growing kids. Analyzed results are visualized on mobile and web application. The impact of ventilation system to indoor air quality is tested statistically and the result shows the proper optimization of indoor air quality.

Control Effects of Several Fungicides on Jujube Anthracnose and Fungicide Resistance Monitoring (몇 종류 살균제의 대추 탄저병균에 대한 방제효과 및 살균제 저항성 모니터링)

  • Lee, Kyeong Hee;Choi, Jiyoung;Park, Subin;Kim, Heung Tae
    • Research in Plant Disease
    • /
    • v.25 no.4
    • /
    • pp.188-195
    • /
    • 2019
  • Among 6 fungicides, fluazinam, which had an excellent inhibitory effect on mycelial growth and spore germination, was also effective in controlling jujube anthracnose in the field. While EC50 values of metconazole and tebuconazole ranged from 0.2 to 0.9 ㎍/ml and from 0.4 to 1.1 ㎍/ml against the mycelial growth, respectively, each inhibitory effect on spore germination was low by 7.4% and 11.1% at 50.0 ㎍/ml. In the field test, they showed the control value of 80.5% and 77.0%, respectively. The protective fungicides, as mancozeb and folpet, which had a low inhibitory effect on the mycelial growth, but had a high inhibitory effect of spore germination, showed excellent disease control activities by 87.6% and 92.0% in the field. Showing a result of resistance monitoring conducted with the isolates of Colletotricum gloeosporioides, the resistance against carbendazim was already generated in the field, but it was thought that there was no resistance to pyraclostrobin, fluazinam and tebuconazole. However, if the resistance factor value of the population of C. gloeosporioides isolates to pyraclostrobin was high by 160.4, the diversity of the response to the fungicide in the population was high, so it should be taken more attention to the resistance management.

Image Processing System based on Deep Learning for Safety of Heat Treatment Equipment (열처리 장비의 Safety를 위한 딥러닝 기반 영상처리 시스템)

  • Lee, Jeong-Hoon;Lee, Ro-Woon;Hong, Seung-Taek;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.77-83
    • /
    • 2020
  • The heat treatment facility is in a situation where the scope of application of the remote IOT system is expanding due to the harsh environment caused by high heat and long working hours among the root industries. In this heat treatment process environment, the IOT middleware is required to play a pivotal role in interpreting, managing and controlling data information of IoT devices (sensors, etc.). Until now, the system controlled by the heat treatment remotely was operated with the command of the operator's batch system without overall monitoring of the site situation. However, for the safety and precise control of the heat treatment facility, it is necessary to control various sensors and recognize the surrounding work environment. As a solution to this, the heat treatment safety support system presented in this paper proposes a support system that can detect the access of the work manpower to the heat treatment furnace through thermal image detection and operate safely when ordering work from a remote location. In addition, an OPEN CV-based deterioration analysis system using DNN deep learning network was constructed for faster and more accurate recognition than general fixed hot spot monitoring-based thermal image analysis. Through this, we would like to propose a system that can be used universally in the heat treatment environment and support the safety management specialized in the heat treatment industry.

Production of Functional Whey Protein Concentrate by Monitoring the Process of Ultrafilteration

  • Jayaprakasha, H.M.;Yoon, Y.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.3
    • /
    • pp.433-438
    • /
    • 2005
  • This investigation was undertaken in order to elicit the relationship between the extent of ultrafiltration processing of whey and its effect on composition and yield of resultant whey protein concentrate (WPC). Cheddar cheese whey was fractionated through ultrafiltration to an extent of 70, 80, 90, 95, 97.5% and 97.5% volume reduction followed by I stage and II stage diafiltration. After each level of ultrafiltration, the composition of WPC was monitored. Similarly, the initial whey was adjusted to 3.0, 6.2 and 7.0 pH levels and ultrafiltration was carried out to elicit the effect of pH of ultrafiltration on the composition. Further, initial whey was adjusted to different levels of whey protein content ranging from 0.5 to 1.0 per cent and subjected to ultrafiltration to different levels. The various range of retentate obtained were further condensed and spray dried in order to assess the yield of WPC per unit volume of whey used and the quantity of whey required to produce unit weight of product. With the progress of ultrafiltration, there was a progressive increase in protein content and decrease in lactose and ash content. The regression study led to good relationships with $R^2$ values of more than 0.95 between the extents of permeate removed and the resultant changes in composition of each of the constituents. Whey processed at pH 3.0 had significantly a very low ash content and high protein content as compared to processing at 6.2 and 7.0. The yield of WPC per unit volume of whey varied significantly with the initial protein content. Higher initial protein content led to higher yield of all ranges of WPC and the quantity of whey required per unit weight of spray dried WPC significantly reduced. Regression equations establishing the relationship between initial protein content of whey and the yield of various types of WPC have been derived with very high $R^2$ values of 0.99. This study revealed that, the yield and composition of whey can be monitored strictly by controlling the processing parameters and WPC can be produced depending on the food formulation requirement.

Image and NFC based Real Time Reagent Measurement and Registration System (영상 및 NFC 기반 실시간 시약 계량 등록 시스템)

  • Lee, Keunwoo;cheong, Sangho;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.652-658
    • /
    • 2019
  • When IoT is applied to various research experiment fields such as physics, pharmacy, biology and medicine, it can increase the safety and convenience of researchers by intelligently monitoring and controlling research equipment and environment with various sensors and devices. For accurate and convenient record management and the research history and the basis but also for the reverse tracking, real-time reagent measurement and registration should be provided as a research support automation services. Currently, existing methods of reagent management are operated by computerized method, but reagent registration and management are not automated. And also record is managed manually, there are many hassles and problems such as a record error and too much time required for quantification and registration for many reagents. In this paper, we study a real time reagent measuring and registration method based on IoT to resolve the problems aforementioned, by the information of the reagent acquired by image recognition and NFC method.

Automated Supervision of Data Production - Managing the Creation of Statistical Reports on Periodic Data

  • Schanzenberger, Anja;Lawrence, D.R.
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.39-53
    • /
    • 2004
  • Data production systems are generally very large, distributed and complex systems used for creating advanced (mainly statistical) reports. Typically, data is gathered periodically and then subsequently aggregated and separated during numerous production steps. These production steps are arranged in a specific sequence (workflow or production chain), and can be located worldwide. Today, a need for improving and automating methods of supervision for data production systems has been recognized. Supervision in this context entails planning, monitoring and controlling data production. Two significant approaches are introduced here for improving this supervision. The first is a 'closely-coupledd' approach (meaning direct communication between production jobs and supervisory tool, informing the supervisory tod immediately about delays in production) - based upon traditional production planning methods typically used for manufacturing (goods) and adopted for working with data production. The second is a 'loosely-coupled' approach (meaning no direct communication between supervisory tool and production jobs is used) - having its origins in proven traditional project management. The supervisory tool just enquires continuously the progress of production. In both cases, dates, costs, resources, and system health information is made available to management. production operators and administrators to support a timely and smooth production of periodic data. Both approaches are theoretically described and compared. The main finding is that, both are useful, but in different cases. The main advantages of the closely coupled approach are the large production optimisation potential and a production overview in form of a job execution plan, whereas the loosely coupled method mainly supports unhindered job execution and offers a sophisticated production overview in form of a milestone schedule. Ideas for further research include investigation of other potential approaches and theoretical and practical comparison.

  • PDF

Responsiveness Comparisons of Self-Report Versus Therapist-Scored Functional Capacity for Workers With Low Back Pain

  • Choi, Bongsam;Park, So-Yeon
    • Physical Therapy Korea
    • /
    • v.19 no.3
    • /
    • pp.91-97
    • /
    • 2012
  • The primary aim of this study was to compare responsiveness of self-report by worker and therapist-scored functional capacity instrument. Self-report and therapist-scored interval-level person measures and item difficulties were compared at admission and discharge. Therapist and worker ratings were collected on 230 clients from 27 rehabilitation sites using the newly developed Occupational Rehabilitation Data Base (ORDB) functional capacity instrument. ORDB comprises several subscales measuring relevant variables of "a return-to-work model" in work-related rehabilitation clinics. The functional capacity scale deals with 10 DOT job factors. The rating scale categories were 1-severely impaired, 2-moderately impaired, 3-mildly impaired, and 4-not impaired. Only data from clients with low back pain (n=98) with complete data (both admission and discharge scores) were used for the present study. Therapists and workers completed the functional capacity instrument at admission and discharge. Rasch analysis [1-parameter item response theory model (IRT)] was applied to calibrate item difficulty and person ability measure of therapist and workers ratings. Effect sizes for therapist and self-report ratings were slightly different, .69 and .30, respectively. Therapist and worker ratings were more consistent at discharge (r=.54) than at admission (r=.32). Workers have a tendency to be more severe in their ratings (show higher item difficulties) than therapists at admission and discharge. Therapists and workers report similar magnitudes of improvement following treatment program. These findings challenge the belief that injured workers may unreliable source for monitoring therapeutic outcomes. Self-report measures have the advantage of conserving therapist time for treatment (versus evaluation). While the therapist and self-report ratings are comparable at discharge, there is less consistency at admission. Comparable therapist-worker ratings may be achieved by controlling for rating severity using IRT methodologies.

Modeling and optimal design of monolithic precision XYZ-stage using flexure mechanism (유연기구를 이용한 초정밀 단일체 3축 스테이지의 모델링 및 최적설계에 관한 연구)

  • Shim, Jong-Yeop;Gweon, Dae-Gab
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.868-878
    • /
    • 1998
  • There are recently increasing needs for precision XYZ-stage in the fields of nanotechnology, specially in AFMs(Atomic Force Microscope) and STMs(Scanning Tunneling Microscope). Force measurements are made in the AFM by monitoring the deflection of a flexible element (usually a cantilever) in response to the interaction force between the probe tip and the sample and controlling the force neasyred constant topography can be obtained. The power of the STM is based on the strong distance dependence of the tunneling current in the vacuum chamber and the current is a feedback for the tip to trace the surface topography. Therefore, it is required for XYZ-stage to position samples with nanometer resolution, without any crosscouples and any parasitic motion and with fast response. Nanometer resolution is essential to investigate topography with reasonable shape. No crosscouples and parasitic motion is essential to investigate topography without any shape distortion. Fast response is essential to investigate topography without any undesirable interaction between the probe tip and sample surface ; sample scratch. To satisfy these requirements, this paper presents a novel XYZ-stage concept, it is actuated by PZT and has a monolithic flexible body that is made symmetric as possible to guide the motion of the moving body linearly. PZT actuators have a very fast response and infinite resolution. Due to the monolithic structure, this XYZ-stage has no crosscouples and by symmetry it has no parasitic motion. Analytical modeling of this XYZ-stage and its verification by FEM modeling are performed and optimal design that is to maximize 1st natural frequencies of the stage is also presented and with that design values stage is manufactured.