• Title/Summary/Keyword: Monitoring algorithm

Search Result 1,835, Processing Time 0.037 seconds

Enhancing Automated Multi-Object Tracking with Long-Term Occlusions across Consecutive Frames for Heavy Construction Equipment

  • Seongkyun AHN;Seungwon SEO;Choongwan KOO
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1311-1311
    • /
    • 2024
  • Recent advances in artificial intelligence technology have led to active research aimed at systematically managing the productivity and environmental impact of major management targets such as heavy equipment at construction sites. However, challenges arise due to phenomena like partial occlusions, resulting from the dynamic working environment of construction sites (e.g., equipment overlapping, obstruction by structures), which impose practical constraints on precisely monitoring heavy equipment. To address these challenges, this study aims to enhance automated multi-object tracking (MOT) in scenarios involving long-term occlusions across consecutive frames for heavy construction equipment. To achieve this, two methodologies are employed to address long-term occlusions at construction sites: (i) tracking-by-detection and (ii) video inpainting with generative adversarial networks (GANs). Firstly, this study proposes integrating FairMOT with a tracking-by-detection algorithm like ByteTrack or SMILEtrack, demonstrating the robustness of re-identification (Re-ID) in occlusion scenarios. This method maintains previously assigned IDs when heavy equipment is temporarily obscured and then reappears, analyzing location, appearance, or motion characteristics across consecutive frames. Secondly, adopting video inpainting with GAN algorithms such as ProPainter is proposed, demonstrating robustness in removing objects other than the target object (e.g., excavator) during the video preprocessing and filling removed areas using information from surrounding pixels or other frames. This approach addresses long-term occlusion issues by focusing on a single object rather than multiple objects. Through these proposed approaches, improvements in the efficiency and accuracy of detection, tracking, and activity recognition for multiple heavy equipment are expected, mitigating MOT challenges caused by occlusions in dynamic construction site environments. Consequently, these approaches are anticipated to play a significant role in systematically managing heavy equipment productivity, environmental impact, and worker safety through the development of advanced construction and management systems.

SVC Based Multi-channel Transmission of High Definition Multimedia and Its Improved Service Efficiency (SVC 적용에 의한 다매체 멀티미디어 지원 서비스 효율 향상 기법)

  • Kim, Dong-Hwan;Cho, Min-Kyu;Moon, Seong-Pil;Lee, Jae-Yeal;Jun, Jun-Gil;Chang, Tae-Gyu
    • Journal of IKEEE
    • /
    • v.15 no.2
    • /
    • pp.179-189
    • /
    • 2011
  • This paper presents an SVC based multi-channel transmission technique. Transmission of high definition multimedia and its service efficiency can be significantly improved by the proposed method. In this method, the HD stream is divided into the two layer streams, i.e., a base layer stream and an enhancement layer stream. The divided streams are transmitted through a primary channel and an auxiliary channel, respectively. The proposed technique provides a noble mode switching technique which enables a seamless service of HD multimedia even under the conditions of abrupt and intermittent deterioration of the auxiliary channel. When the enhancement layer stream is disrupted by the channel monitoring in the mode switching algorithm, the algorithm works further to maintain the spatial and time resolution of the HD multimedia by upsampling and interpolating the base layer stream, consequently serving for the non disrupted play of the media. Moreover, the adoption of an adaptive switching algorithm significantly reduces the frequency of channel disruption avoiding the unnecessary switching for the short period variations of the channel. The feasibility of the proposed technique is verified through the simulation study with an example application to the simultaneous utilization of both Ku and Ka bands for HD multimedia broadcasting service. The rainfall modeling and the analysis of the satellite channel attenuation characteristics are performed to simulate the quality of service performance of the proposed HD broadcasting method. The simulation results obtained under a relatively poor channel (weather) situations show that the average lasting period of enhancement layer service is extended from 9.48[min] to 23.12[min] and the average switching frequency is reduced from 3.84[times/hour] to 1.68[times/hour]. It is verified in the satellite example that the proposed SVC based transmission technique best utilizes the Ka band channel for the service of HD broadcasting, although it is characterized by its inherent weather related poor reliability causing severe limitations in its independent application.

Preliminary Study on the MR Temperature Mapping using Center Array-Sequencing Phase Unwrapping Algorithm (Center Array-Sequencing 위상펼침 기법의 MR 온도영상 적용에 관한 기초연구)

  • Tan, Kee Chin;Kim, Tae-Hyung;Chun, Song-I;Han, Yong-Hee;Choi, Ki-Seung;Lee, Kwang-Sig;Jun, Jae-Ryang;Eun, Choong-Ki;Mun, Chi-Woong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.131-141
    • /
    • 2008
  • Purpose : To investigate the feasibility and accuracy of Proton Resonance Frequency (PRF) shift based magnetic resonance (MR) temperature mapping utilizing the self-developed center array-sequencing phase unwrapping (PU) method for non-invasive temperature monitoring. Materials and Methods : The computer simulation was done on the PU algorithm for performance evaluation before further application to MR thermometry. The MR experiments were conducted in two approaches namely PU experiment, and temperature mapping experiment based on the PU technique with all the image postprocessing implemented in MATLAB. A 1.5T MR scanner employing a knee coil with $T2^*$ GRE (Gradient Recalled Echo) pulse sequence were used throughout the experiments. Various subjects such as water phantom, orange, and agarose gel phantom were used for the assessment of the self-developed PU algorithm. The MR temperature mapping experiment was initially attempted on the agarose gel phantom only with the application of a custom-made thermoregulating water pump as the heating source. Heat was generated to the phantom via hot water circulation whilst temperature variation was observed with T-type thermocouple. The PU program was implemented on the reconstructed wrapped phase images prior to map the temperature distribution of subjects. As the temperature change is directly proportional to the phase difference map, the absolute temperature could be estimated from the summation of the computed temperature difference with the measured ambient temperature of subjects. Results : The PU technique successfully recovered and removed the phase wrapping artifacts on MR phase images with various subjects by producing a smooth and continuous phase map thus producing a more reliable temperature map. Conclusion : This work presented a rapid, and robust self-developed center array-sequencing PU algorithm feasible for the application of MR temperature mapping according to the PRF phase shift property.

  • PDF

Modelling of Fault Deformation Induced by Fluid Injection using Hydro-Mechanical Coupled 3D Particle Flow Code: DECOVALEX-2019 Task B (수리역학적연계 3차원 입자유동코드를 사용한 유체주입에 의한 단층변형 모델링: DECOVALEX-2019 Task B)

  • Yoon, Jeoung Seok;Zhou, Jian
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.320-334
    • /
    • 2020
  • This study presents an application of hydro-mechanical coupled Particle Flow Code 3D (PFC3D) to simulation of fluid injection induced fault slip experiment conducted in Mont Terri Switzerland as a part of a task in an international research project DECOVALEX-2019. We also aimed as identifying the current limitations of the modelling method and issues for further development. A fluid flow algorithm was developed and implemented in a 3D pore-pipe network model in a 3D bonded particle assembly using PFC3D v5, and was applied to Mont Terri Step 2 minor fault activation experiment. The simulated results showed that the injected fluid migrates through the permeable fault zone and induces fault deformation, demonstrating a full hydro-mechanical coupled behavior. The simulated results were, however, partially matching with the field measurement. The simulated pressure build-up at the monitoring location showed linear and progressive increase, whereas the field measurement showed an abrupt increase associated with the fault slip We conclude that such difference between the modelling and the field test is due to the structure of the fault in the model which was represented as a combination of damage zone and core fractures. The modelled fault is likely larger in size than the real fault in Mont Terri site. Therefore, the modelled fault allows several path ways of fluid flow from the injection location to the pressure monitoring location, leading to smooth pressure build-up at the monitoring location while the injection pressure increases, and an early start of pressure decay even before the injection pressure reaches the maximum. We also conclude that the clay filling in the real fault could have acted as a fluid barrier which may have resulted in formation of fluid over-pressurization locally in the fault. Unlike the pressure result, the simulated fault deformations were matching with the field measurements. A better way of modelling a heterogeneous clay-filled fault structure with a narrow zone should be studied further to improve the applicability of the modelling method to fluid injection induced fault activation.

Performance Evaluation of Monitoring System for Sargassum horneri Using GOCI-II: Focusing on the Results of Removing False Detection in the Yellow Sea and East China Sea (GOCI-II 기반 괭생이모자반 모니터링 시스템 성능 평가: 황해 및 동중국해 해역 오탐지 제거 결과를 중심으로)

  • Han-bit Lee;Ju-Eun Kim;Moon-Seon Kim;Dong-Su Kim;Seung-Hwan Min;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1615-1633
    • /
    • 2023
  • Sargassum horneri is one of the floating algae in the sea, which breeds in large quantities in the Yellow Sea and East China Sea and then flows into the coast of Republic of Korea, causing various problems such as destroying the environment and damaging fish farms. In order to effectively prevent damage and preserve the coastal environment, the development of Sargassum horneri detection algorithms using satellite-based remote sensing technology has been actively developed. However, incorrect detection information causes an increase in the moving distance of ships collecting Sargassum horneri and confusion in the response of related local governments or institutions,so it is very important to minimize false detections when producing Sargassum horneri spatial information. This study applied technology to automatically remove false detection results using the GOCI-II-based Sargassum horneri detection algorithm of the National Ocean Satellite Center (NOSC) of the Korea Hydrographic and Oceanography Agency (KHOA). Based on the results of analyzing the causes of major false detection results, it includes a process of removing linear and sporadic false detections and green algae that occurs in large quantities along the coast of China in spring and summer by considering them as false detections. The technology to automatically remove false detection was applied to the dates when Sargassum horneri occurred from February 24 to June 25, 2022. Visual assessment results were generated using mid-resolution satellite images, qualitative and quantitative evaluations were performed. Linear false detection results were completely removed, and most of the sporadic and green algae false detection results that affected the distribution were removed. Even after the automatic false detection removal process, it was possible to confirm the distribution area of Sargassum horneri compared to the visual assessment results, and the accuracy and precision calculated using the binary classification model averaged 97.73% and 95.4%, respectively. Recall value was very low at 29.03%, which is presumed to be due to the effect of Sargassum horneri movement due to the observation time discrepancy between GOCI-II and mid-resolution satellite images, differences in spatial resolution, location deviation by orthocorrection, and cloud masking. The results of this study's removal of false detections of Sargassum horneri can determine the spatial distribution status in near real-time, but there are limitations in accurately estimating biomass. Therefore, continuous research on upgrading the Sargassum horneri monitoring system must be conducted to use it as data for establishing future Sargassum horneri response plans.

Comparative Study of KOMPSAT-1 EOC Images and SSM/I NASA Team Sea Ice Concentration of the Arctic (북극의 KOMPSAT-1 EOC 영상과 SSM/I NASA Team 해빙 면적비의 비교 연구)

  • Han, Hyang-Sun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.507-520
    • /
    • 2007
  • Satellite passive microwave(PM) sensors have been observing polar sea ice concentration(SIC), ice temperature, and snow depth since 1970s. Among them SIC is playing an important role in the various studies as it is considered the first factor for the monitoring of global climate and environment changes. Verification and correction of PM SIC is essential for this purpose. In this study, we calculated SIC from KOMPSAT-1 EOC images obtained from Arctic sea ice edges from July to August 2005 and compared with SSM/I SIC calculated from NASA Team(NT) algorithm. When we have no consideration of sea ice types, EOC and SSM/I NT SIC showed low correlation coefficient of 0.574. This is because there are differences in spatial resolution and observing time between two sensors, and the temporal and spatial variation of sea ice was high in summer Arctic ice edge. For the verification of SSM/I NT SIC according to sea ice types, we divided sea ice into land-fast ice, pack ice, and drift ice from EOC images, and compared them with SSM/I NT SIC corresponding to each ice type. The concentration of land-fast ice between EOC and SSM/I SIC were calculated very similarly to each other with the mean difference of 0.38%. This is because the temporal and spatial variation of land-fast ice is small, and the snow condition on the ice surface is relatively dry. In case of pack ice, there were lots of ice ridge and new ice that are known to be underestimated by NT algorithm. SSM/I NT SIC were lower than EOC SIC by 19.63% in average. In drift ice, SSM/I NT SIC showed 20.17% higher than EOC SIC in average. The sea ice with high concentration could be included inside the wide IFOV of SSM/I because the drift ice was located near the edge of pack ice. It is also suggested that SSM/I NT SIC overestimated the drift ice covered by wet snow.

Video Analysis System for Action and Emotion Detection by Object with Hierarchical Clustering based Re-ID (계층적 군집화 기반 Re-ID를 활용한 객체별 행동 및 표정 검출용 영상 분석 시스템)

  • Lee, Sang-Hyun;Yang, Seong-Hun;Oh, Seung-Jin;Kang, Jinbeom
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.89-106
    • /
    • 2022
  • Recently, the amount of video data collected from smartphones, CCTVs, black boxes, and high-definition cameras has increased rapidly. According to the increasing video data, the requirements for analysis and utilization are increasing. Due to the lack of skilled manpower to analyze videos in many industries, machine learning and artificial intelligence are actively used to assist manpower. In this situation, the demand for various computer vision technologies such as object detection and tracking, action detection, emotion detection, and Re-ID also increased rapidly. However, the object detection and tracking technology has many difficulties that degrade performance, such as re-appearance after the object's departure from the video recording location, and occlusion. Accordingly, action and emotion detection models based on object detection and tracking models also have difficulties in extracting data for each object. In addition, deep learning architectures consist of various models suffer from performance degradation due to bottlenects and lack of optimization. In this study, we propose an video analysis system consists of YOLOv5 based DeepSORT object tracking model, SlowFast based action recognition model, Torchreid based Re-ID model, and AWS Rekognition which is emotion recognition service. Proposed model uses single-linkage hierarchical clustering based Re-ID and some processing method which maximize hardware throughput. It has higher accuracy than the performance of the re-identification model using simple metrics, near real-time processing performance, and prevents tracking failure due to object departure and re-emergence, occlusion, etc. By continuously linking the action and facial emotion detection results of each object to the same object, it is possible to efficiently analyze videos. The re-identification model extracts a feature vector from the bounding box of object image detected by the object tracking model for each frame, and applies the single-linkage hierarchical clustering from the past frame using the extracted feature vectors to identify the same object that failed to track. Through the above process, it is possible to re-track the same object that has failed to tracking in the case of re-appearance or occlusion after leaving the video location. As a result, action and facial emotion detection results of the newly recognized object due to the tracking fails can be linked to those of the object that appeared in the past. On the other hand, as a way to improve processing performance, we introduce Bounding Box Queue by Object and Feature Queue method that can reduce RAM memory requirements while maximizing GPU memory throughput. Also we introduce the IoF(Intersection over Face) algorithm that allows facial emotion recognized through AWS Rekognition to be linked with object tracking information. The academic significance of this study is that the two-stage re-identification model can have real-time performance even in a high-cost environment that performs action and facial emotion detection according to processing techniques without reducing the accuracy by using simple metrics to achieve real-time performance. The practical implication of this study is that in various industrial fields that require action and facial emotion detection but have many difficulties due to the fails in object tracking can analyze videos effectively through proposed model. Proposed model which has high accuracy of retrace and processing performance can be used in various fields such as intelligent monitoring, observation services and behavioral or psychological analysis services where the integration of tracking information and extracted metadata creates greate industrial and business value. In the future, in order to measure the object tracking performance more precisely, there is a need to conduct an experiment using the MOT Challenge dataset, which is data used by many international conferences. We will investigate the problem that the IoF algorithm cannot solve to develop an additional complementary algorithm. In addition, we plan to conduct additional research to apply this model to various fields' dataset related to intelligent video analysis.

Development of the Filterable Water Sampler System for eDNA Filtering and Performance Evaluation of the System through eDNA Monitoring at Catchment Conduit Intake-Reservoir (eDNA 포집용 채수 필터시스템 개발과 집수매거 취수지 내에서의 성능평가)

  • Kwak, Tae-Soo;Kim, Won-Seok;Lee, Sun Ho;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.272-279
    • /
    • 2021
  • A pump-type eDNA filtering system that can control voltage and hydraulic pressure respectively has been developed, and applied a filter case that can filter out without damaging the filter. The filtering performance of the developed system was evaluated by comparing the eDNA concentration with the conventional vacuum-pressured filtering method at the catchment conduit intake reservoir. The developed system was divided into a voltage control (manual pump system) method and a pressure control (automatic pump system) method, and the pressure was measured during filtering and the pressure change of each system was compared. The voltage control method started with 65 [KPa] at the beginning of the filtering, and as the filtering time elapsed, the amount of filtrate accumulated in the filter increased, so the pressure gradually increased. As a result of controlling the pressure control method to maintain a constant pressure according to the designed algorithm, there was a difference in the width of the hydraulic pressure fluctuation during the filtering process according to the feedback time of the hydraulic pressure sensor, and it was confirmed that the pressure was converged to the target pressure. The filtering performance of the developed system was confirmed by measuring the eDNA concentration and comparing the voltage control method and the hydraulic control method with the control group. The voltage control method obtained similar results to the control group, but the hydraulic control method showed lower results than the control group. It is considered that the low eDNA concentration in the hydraulic control method is due to the large pressure deviation during filtering and maintaining a constant pressure during the filtering process. Therefore, rather than maintaining a constant pressure during filtering, it was confirmed that a voltage control method in which the pressure is gradually increased as the filtrate increases with the lapse of filtering time is suitable for collecting eDNA. As a result of comparing the average concentration of eDNA in lentic zone and lotic zone as a control group, it was found to be 96.2 [ng µL-1] and 88.4 [ng µL-1l], respectively. The result of comparing the average concentration of eDNA by the pump method was also high in the lentic zone sample as 90.7 [ng µL-1] and 74.8 [ng µL-1] in the lentic zone and the lotic zone, respectively. The high eDNA concentration in the lentic zone is thought to be due to the influence of microorganisms including the remaining eDNA.

A Study on the Remote Control for a Integrated Communication Systems (통합통신시스템의 원격제어에 관한 연구)

  • 조학현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.1
    • /
    • pp.19-25
    • /
    • 2003
  • The radio communications by SSB and VHF transceivers are still used very efficiently in coast stations. The SSB and VHF equipments are very important to transmit and receive informations in the sea and the land. The communication system by the conventional SSB and VHF transceivers between a coast station and a terminal is an one-to-one system. In this dissertation, however, the conventional one-to-one system is expanded to one-to-multiple systems. Then, frequencies can be used effectively for distress, urgency, safety traffic. In addition, one to multi-number systems can be used to interrupt. When the ICS equipments are set up to the VHF transceiver. It is possible to communicate with ship in far distance the communication range can be enlarged. The line switching system by the ICS is to be remote-controlled by ASK modulated PTT signals and audio signals. An ICS can change a connection between terminal and transceiver through a circuit switching system at any time. For this purpose, the author has researched and developed a ASK transmission system, ICS system, control algorithm, multiprocessor system, and monitoring system. As a conclusion, the developed line switching control systems and equipments can be used effectively for maritime communication, military communication, fishery communication, etc.

Design of Transportation Safety system with GPS Precise Point Positioning (고정밀 GPS 항법정보 기반 선박통항안전시스템 설계)

  • Song, Se-Phil;Cho, Deuk-Jae;Park, Sul-Gee;Hong, Chul-Eui;Park, Sang-Hyun;Suh, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.37 no.1
    • /
    • pp.71-77
    • /
    • 2013
  • Most of the maritime accidents are the crash that occurred by complex coastal terrain, increased maritime traffic and frequent weather changes. Therefore, transportation safety is exactly determined using accurate environmental informations, but if informations are inaccurate or insufficient, accident risk can be increased. Therefore, ship need the system that can accurately generate transportation safety information. This paper proposes the transportation safety system and performance evaluation in the real environment. The proposed system includes database of environment informations and navigation algorithm using PPP method to estimate the accurate ship position. Therefore, this system can accurately calculate distance or freeboard between ship with other factors. Futhermore, when weather is deteriorated, crew can sail with database based 3-D monitoring module in the transportation safety system. To verify the function and performance, data of Kyungin ARA waterway and ferry is used to evaluation.