• Title/Summary/Keyword: Mongolia fly ash

Search Result 2, Processing Time 0.016 seconds

A Study on the Application of Mongolia Fly Ash as Cement Additive (몽골 플라이애시의 시멘트 혼화재로의 적용에 관한 연구)

  • Seo, Sung Kwan;Kim, Yoo;Cho, Hyung Kyu;Chu, Yong Sik
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.50-57
    • /
    • 2017
  • In this study, characteristics of Mongolian fly ash and the possibility of its use as a cement additive through grinding process were examined. Mongolian fly ash was larger than domestic fly ash and less spherical. The CaO content of Mongolian fly ash was higher than domestic fly ash and the other components were similar. After vibratory milling, the mean particle size of fly ash decreased to $7.9{\mu}m$ and the blaine increased. When milled fly ash was mixed with cement, it showed the best compressive strength value at 60 min. These strength values were higher than OPC at all curing times.

Research on basic mechanical properties and damage mechanism analysis of BFUFARC

  • Yu H. Yang;Sheng J. Jin;Chang C. Shi;Wen P. Ma;Jia K. Zhao
    • Advances in concrete construction
    • /
    • v.16 no.6
    • /
    • pp.277-290
    • /
    • 2023
  • In order to study the mechanical properties of basalt fiber reinforced ultra-fine fly ash concrete (BFUFARC), the effects of ultra-fine fly ash (UFA) content, basalt fiber content, basalt fiber length and water reducing agent content on the compressive strength, splitting tensile strength and flexural strength of the composite material were studied through experimental and theoretical analysis. Also, a scanning electron microscope (SEM) was employed to analyze the mesoscopic structure in the fracture surface of composite material specimens at magnifications of 500 and 3500. Besides, the energy release rate (Gc) and surface free energy (γs) of crack tip cracking on BFUFARC in different basalt fiber content were studied from the perspective of fracture mechanics. Further, the cracking resistance, reinforcement, and toughening mechanisms of basalt fibers on concrete substrate were revealed by surface free energy of BFUFARC. The experimental results indicated that basalt fiber content is the main influence factor on the splitting tensile strength of BFUFARC. In case that fiber content increased from 0 to 0.3%, the concrete surface free energy at the tip of single-sided crack showed a trend of increased at first and then decreased. The surface free energy reached at maximum, about 3.59 × 10-5 MN/m. During the process of increasing fiber content from 0 to 0.1%, GC-2γS showed a gradually decreasing trend. As a result, an appropriate amount of basalt fiber can play a preventing cracking role by increasing the concrete surface free energy, further effectively improve the concrete splitting tensile performance.