• Title/Summary/Keyword: Momentum of water mist

Search Result 10, Processing Time 0.021 seconds

Analysis for fire suppression efficiency of intermittent water spray pattern with FDS (FDS를 이용한 교번식 미분무방식의 소화 성능 분석)

  • Jee, Moon-Hak;Lee, Byung-Kon
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.200-203
    • /
    • 2008
  • Water mist fire suppression system utilizes the fire suppression features such as cooling of fire source, dilution of ambient oxygen, and shielding of radiation heat with the evaporation of microscopic water droplets. The momentum of water mist is relatively low and the infiltration of water mist to the fire source is not effective. In addition to lower penetration force, the evaporated water vapor is liable to decline to limited portion of fire source due to its light weight and sparse density. On the other hand, the cycling water mist system is expected to improve the penetration force of water mist as well as the dilution coverage capability with the stratified spray characteristics. At this paper we present the analyzed fire suppression capability of intermittent water spray pattern by use of FDS which is computational fire dynamics fire model. We expect this analysis shall be supportive to the development of the prototype of water mist nozzle.

  • PDF

Analysis of Fire Suppression Efficiency for Intermittent Water Spray Pattern by Fire Dynamics Simulator (FDS를 이용한 교번식 미분무방식의 소화 성능 분석)

  • Jee, Moon-Hak;Lee, Byung-Kon
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.216-220
    • /
    • 2008
  • Water mist fire suppression system utilizes the fire suppression features such as cooling of fire source, dilution of ambient oxygen, and shielding of radiation heat with the evaporation of microscopic water droplets. The momentum of water mist is relatively lower than that of larger water droplet and the infiltration of water mist to the fire source is not effective. Contribution of evaporated water vapor is liable to decline to limited portion of fire source due to its light weight and sparse density. On the other hand, the cycling water mist pattern is expected to improve the penetration force of water mist as well as the air expelling capability with the stratified spray characteristics. At this paper, we present the analyzed fire suppression capability of intermittent water spray pattern by use of FDS which is computational fire dynamics fire model. We expect this analysis can support the basic concept to the development of the prototype of water mist nozzle.

Extinguishing Characteristics of Cooking Oil Fire by Water Mist added with AFFF Agent (수성막포 약제를 첨가한 미분무수의 식용유 화재 소화특성)

  • Shin, Chang-Sub;Kim, Seong-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.21-27
    • /
    • 2009
  • Effective way of cooking oil fire extinguishment is using water mist system which has cooling and smothering effects. Low pressure water mist system has advantage because it is compatible with existing sprinkler systems. To increase the effectiveness of low pressure water mist system, additives can be used which increase the momentum of water particle and the chemical effect. In this experiment, aqueous film forming form(AFFF) agent is used as additive and the effect of additive concentration and water pressure are experimented. For the extinguishment of cooking oil fire such as soybean and olive oils, AFFF agent is effective and can decrease the fire extinguishing time and water consumption.

Extinguishment of n-heptane Pool Fire by Water Mist Containing Alkali Metal Agent (알칼리 금속염을 함유한 미분무수의 헵탄 Pool Fire 소화)

  • Park, Jae-Man;Shin, Chang-Sub
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.105-111
    • /
    • 2005
  • An experimental study is performed for extinguishing of n-heptane pool fire by water mist containing potassium acetate as a fire suppression additive. Water mist was generated by a single pressure nozzle in a small-scale chamber. The drop size distribution of water mist was measured using laser diffraction(Malvern particle sizer). The flame temperature, oxygen concentration and carbon monoxide concentration were measured. In case of using additives, the fire extinguishing time was shorter than that of pure water at a given discharge pressure and it was because the momentum of a water droplet containing additives was increased. And also dissociated metal atoms, potassium, were reacted as a scavenger of the major radical species OH, H which were generated for combustion process. Moreover, at a high pressure of 4MPa, the fire was extinguished through blowing effect as well as primary extinguishing mechanisms.

An Experimental Study for the Effect of Ventilation Velocity on Performance of a High Pressure Water Mist Fire Suppression System (객차내 환기속도가 고압 미세물분무 화재제어 시스템 성능에 미치는 영향에 대한 실험적 연구)

  • Kim, Dong-Woon;Bae, Seung-Yong;Ryou, Hong-Sun
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.1-6
    • /
    • 2008
  • This experiments are perfol1ned to investigate the effect of ventilation velocity on a high pressure water mist tire suppression in train. The experiment is conducted in half scale modeled train of a steel-welled enclosure (5.0m${\times}$2.4m${\times}$2.2m). The ventilation velocity is controlled by the ventilation duct through an inverter in the range of 0 to 3m/s. The coverage-radius and an injection angle of an high pressure water mist system are measured. The mist nozzle with 5-injection holes is operated with pressure 60bar. The heptane pool fires are used. The fire extinguishment times and the temperature are measured for the ventilation velocities. In conclusion, because the momentum of injected water mist is more dominant than that of ventilation air, the characteristics of water mist, the fire extinguishment times and the temperature are affected very little by ventilation velocity.

Recent Progress in Methods of Generating Water Mist for Fire Suppression

  • Guangxuan, Liao;Xin, Huang;Beihua, Cong;Jun, Qin;Jianghong, Liu;Xishi, Wang
    • Journal of ILASS-Korea
    • /
    • v.11 no.4
    • /
    • pp.251-265
    • /
    • 2006
  • To prevent the ozonosphere from being destroyed by Halon, it is an urgent task to find out Halon replacement. As one of the replacements water mist have showed broad applications by its advantages: little pollution to environment (not destroying the ozone layer or bring green house effect), extinguishing fire quickly, consuming a small quantity of water and having little damage to the protected objects. The methods of generating water mist strongly influence fire suppression effectiveness, which determine the cone angle, drop size distribution, flux uniformity, and momentum of the generating spray. The traditional water mist nozzle included pressure jet nozzles, impingement nozzles and twin-fluid nozzles. All of them have more or less disadvantages for fire suppression. Therefore, many research institutes and corporations are taking up with innovations in mist generation. This article provided some recent studies in State Key Laboratory of Fire Science (SKLFS) of University of Science and Technology of China. SKLFS have investigated new methods of generating water mist (i.e. effervescent atomization and ultrasonic atomization). and self developed a series of nozzles and developed advanced DPIVS (Digital Particle Image Velocimetry and Sizing) technique. Characteristics of water mist (the distribution of droplet sizes, flux density, spray dynamics and cone angle) produced by these nozzles were measured under different conditions (work pressure, nozzle geometry, etc.) using LDV/APV and DPTVS systems. A series of experiments were performed to study the fire suppression effectiveness in different fire scenario (different kindsof the fuel, fire size and ventilation conditions). The fire extinguishing mechanisms of water mist was also discussed.

  • PDF

An Experimental Evaluation for the Effect of Ventilation Velocity in Subway Train on Performance of a High Pressure Water Mist Fire Suppression (지하철 객차 내 환기 속도가 고압 미세물분무 화재제어 시스템의 성능에 대한 실험평가)

  • Kim, Dong-Woon;Bae, Seung-Yong;Kim, Dong-Suk;Park, Won-Hee;Ryou, Hong-Sun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1307-1312
    • /
    • 2007
  • This experiments are performed to investigate the effect of ventilation velocity on a high pressure water mist fire suppression in subway train. The experiment is conducted in half scale modeled train of a steel-welled enclosure (8.0m*2.4m*2.1m). The ventilation velocity is controlled by the ventilation duct through an inverter in the range of 0 to 2 m/s. The coverage-radius and an injection angle of an high pressure water mist system are measured. The mist nozzle with 7-injection holes is operated with pressure 80 bar. The heptane pool fires are used. The fire extinguishment times and the temperatures are measured for the ventilation velocities. In conclusion, because the momentum of injected water mist is more dominant than that of ventilation air, the characteristics of water mist, the fire extinguishment times and the temperatures are affected very little by ventilation velocity.

  • PDF

Extinguishment of Liquid Fuel Fire by Water Mist Containing Additives

  • Park, Jae-Man;Won, Jung-Il;Shin, Chang-Sub
    • International Journal of Safety
    • /
    • v.4 no.2
    • /
    • pp.24-29
    • /
    • 2005
  • An experimental study was presented for extinguishing characteristics of liquid fuel fire by water mist($Dv_{0.99}{\leq}200{\mu}m$) containing potassium acetate and sodium acetate trihydrate. To evaluate the extinguishing performance of water mist containing additives, the evaporation characteristics of a water droplet on a heated surface was examined. The evaporation process was recorded by a charge-coupled-device camera. Also, small-scale extinguishing tests were conducted for n-heptane pool fire in ventilated space. During the experiments, flame temperatures were measured, and concentrations of oxygen and carbon monoxide were analyzed by a combustion gas analyzer. The average evaporation rate of water droplet containing additives was lower than that of pure water at a given surface temperature and decreased with the concentration increase due to the precipitation of salt in the liquid-film and change of surface tension. In case of using additives, the fire extinguishing times was shorter than that of pure water at a given discharge pressure and it was because the momentum of a water droplet containing additives was increased. And also dissociated metal atoms, potassium or sodium, were reacted as a scavenger of the major radical species OH, H which were generated for combustion process. Moreover, at a high pressure of 4 MPa, the fire was extinguished through blowing effect as well as primary extinguishing mechanisms.

NUMERICAL STUDY OF CHIP COOLING ENHANCEMENT WITH EVAPORATING MIST FLOW (분무 증발을 이용한 칩 냉각 향상에 대한 수치적 연구)

  • Roh, S.E.;Kim, D.;Son, G.
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.9-16
    • /
    • 2013
  • The heat transfer enhancement of heat sink with mist flow is studied numerically by solving the conservation equations for mass, momentum and energy in the continuous and dispersed phases. A Lagrangian method is used for tracing dispersed water droplets in the heat sink and an Eulerian species transport model for air and steam mixture. The continuous and dispersed phases are interacted with the drag and evaporation source terms. The computed results show that addition of evaporating mist droplets enhances the cooling performance of heat sink significantly.

Extinguishing Characteristics of Liquid Pool Eire by Water Mist Containing Sodium Salt (나트륨 염이 첨가된 미분무수의 액체 pool fire소화특성)

  • Park Jae-Man;Shin Chang-Sub
    • Fire Science and Engineering
    • /
    • v.19 no.3 s.59
    • /
    • pp.13-19
    • /
    • 2005
  • An experimental study is presented for extinguishing characteristics of liquid fuel fire by water mist containing sodium acetate trihydrate. To evaluate the extinguishing performance of water mist containing an additive, the evaporation characteristics of a water droplet on a heated surface was examined. The evaporation process was recorded by a charge-coupled-device camera. Also, small-scale extinguishing tests were conducted for n-heptane pool fire in ventilated space to measure flame temperature variation. The average evaporation rate of a water droplet containing an additive was lower than that of a pure water droplet at a given surface temperature due to the precipitation of salt in the liquid-film and change of surface tension. In case of using an additive, the flame temperature was lower than that of pure water at a given discharge pressure and it was because the momentum of a water droplet containing an additive was increased reducing flame size. And also dissociated metal atoms, sodium, were reacted as a scavenger of the major radical species OH^-,\;H^+$ which were generated for combustion process. Moreover, at a high pressure of 4MPa, the fire was extinguished through blowing effect as well as primary extinguishing mechanisms.