• Title/Summary/Keyword: Momentum balance

검색결과 127건 처리시간 0.03초

A Modification of Departure from Nucleate Boiling Model Based on Mass, Energy, and Momentum Balance For Subcooled Flow Boiling in Vertical Tubes

  • Sul, Young-Sil;Lee, Kwang-Won;Ju, Kyong-In;Cheong, Jong-Sik;Yang, Jae-Young
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.108-113
    • /
    • 1996
  • Several analytical models for the departure from nucleate boiling (DNB) phenomenon have been developed during the last decade. Among these, Chang & Lee's model based on a bubble crowding mechanism is remarkable in the fundamental features characterized as the formulation of mass, energy, and momentum balance equation at thermal-hydraulic conditions leading to the DNB. However, Bricard and Souyri remarked that the assumption of stagnant bubbly layer at the DNB condition is questionable and the signs on the axial projections of the momentum fluxes at the core/bubbly layer interface in the momentum balance equations are erroneous. From this remark, Chang & Lee's model has been re-examined and modified by correcting the erroneous treatments in the momentum balance equations and removing the spurious assumptions. The revised model predicts well the extensive DNB data of water in uniformly heated tubes at low qualities and shows more accurate prediction compared with the original model.

  • PDF

용적 내부의 유동에 의한 모멘텀을 고려한 GMA 용접의 입상용적 이행에 대한 해석 (Analysis of Globular Transfer Considering Momentum Induced by Flow Within Molten Drop in GMAW)

  • ;이승현;강문진;유중돈
    • Journal of Welding and Joining
    • /
    • 제26권4호
    • /
    • pp.61-65
    • /
    • 2008
  • The static force balance model (SFBM) has been used to analyze drop transfer in gas metal arc welding. Although the SFBM is capable of predicting the detaching drop size in the globular mode with reasonable accuracy, discrepancy between the calculated and experimental results increases with current. In order to reduce discrepancy, the SFBM is modified by considering the momentum of the molten metal flow, which is generated by the pinch pressure. The momentum increases with smaller drop size and becomes compatible to the electromagnetic force. The modified force balance model (MFBM) predicts the experimental results more accurately, and extends its application to the projected mode.

A Study of the Momentum Balance in the High-Latitude Lower Thermosphere Based on the Ncar-Tiegcm: Dependence on the Interplanetary Magnetic Field (IMF)

  • Kwak, Young-Sil;Ahn, Byung-Ho;Arthur D. Richmond
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권1호
    • /
    • pp.70-70
    • /
    • 2004
  • Lower thermospheric winds are forced primarily by non-uniform solar heating, atmospheric tides and other waves coming from below, and energy and momentum forcing associated with high-latitude magnetosphere-ionosphere coupling, particularly ion drag and Joule heating. To understand the physical processes that control the thermospheric dynamics, we quantify the momentum forces that are mainly responsible for maintaining the high-latitude lower thermospheric wind system and examine the resulting momentum balance with the aid of the Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) developed by the National Center for Atmospheric Research. (omitted)

  • PDF

수급(需給)균형을 고려한 공급사슬 재계획에 관한 연구 (Supply Chain Replanning Considering Balance of Supply and Demand)

  • 조민관;이영해
    • 산업공학
    • /
    • 제17권spc호
    • /
    • pp.79-89
    • /
    • 2004
  • Supply Chain (SC) can balance demands with supply activities as executing Supply Chain Planning (SCP). The fluctuated demands, however, will break the balance between demand and supply. It means that the present SCP is useless in responding the changed demands. Thus it is necessary for SCP to be updated with changed demands. We call this procedure as Supply Chain Replanning. However, the existing measures for SC can not deal with the balance between supply and demand so that they can not detect effectively the timing of replanning. For this reason, a new performance measure, Balancing Point, is developed using momentum, a concept of Physics. It can treat the balance between supply and demand. Also, a replanning method based on Balancing Point is proposed. The proposed method is more effective than the existing replanning method, periodic replanning method and net inventory method.

자이로를 이용한 두 링크 도립진자의 자세안정화 (Stabilization of a Two-link Inverted Pendulum with a Rate Gyro)

  • 조백규
    • 제어로봇시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.28-34
    • /
    • 2012
  • Human generally uses three methods to keep balance. One of them is using reactive momentum such as swing an upper body or arms. In this study, we proposed a balancing controller for the reactive momentum method using an inverted pendulum. We simplified a human or a humanoid robot as a two-link inverted pendulum having two edges. In addition, we proposed a distinctive condition for controller transition. If a human is pushed, he has to change a balancing controller from using an ankle torque to using a reactive momentum or changing foot placement. When the balancing controller is changed from using an ankle torque to using a reactive momentum, it is required a proper timing to keep a stability and make smooth movement. In the experiment, the proposed controller and distinctive condition were verified.

일정경사 수심단면에서 평균수위의 상승/저하 효과를 고려한 해빈류의 예측 (Prediction of Longshore Current with Set-up/down Effect on a Plane Beach)

  • 이철응;김영중;최한규
    • 산업기술연구
    • /
    • 제17권
    • /
    • pp.277-289
    • /
    • 1997
  • The numerical model for prediction of longshore current with set-up/down effect on a plane beach is developed using the longshore component of the depth-integrated momentum balance equation. To predict the longshore current, the wave height model should first be formulated because the longshore current depends on the wave height directly. Two wave model, regular wave model and random wave model, are developed based on the energy flux balance equation. Also, the numerical model estimating the set-up inside the shoreline is developed using both the on-offshore momentum equation and the moving boundary technique. The numerical models are verified by the analytical solution, and compared with laboratory data. It is found from the comparison that developed models may be predicted accurately the longshore current with set-up/down effect on a plane beach.

  • PDF

Simplified modeling of slide-fed curtain coating flow

  • Jung Hyun Wook;Lee Joo Sung;Hyun Jae Chun;Kim See Jo;Scriven L. E.
    • Korea-Australia Rheology Journal
    • /
    • 제16권4호
    • /
    • pp.227-233
    • /
    • 2004
  • Simplified model of slide-fed curtain coating flow has been developed and tested in this study. It rests on the sheet profile equations for curtain thickness in curtain flow and its trajectory derived by the integral momentum balance approach of Higgins and Scriven (1979) and Kistler (1983). It also draws on the film profile equation of film thickness variation in flow down a slide. The equations have been solved in finite difference approximation by Newton iteration with continuation. The results show that how inertia (Rey­nolds number), surface tension (capillary number), inclination angle of the slide, and air pressure difference across the curtain affect sheet trajectory and thickness profile. It has been revealed that approximate models can be useful to easily analyze coating flow dynamics without complex computations, giving qualitative agreement with full theory and with experiment.

비평탄면에서의 4 족 로봇의 갤로핑 알고리즘 (Galloping Algorithm of Quadruped Robots on Irregular Surface)

  • 신창록;박종현;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.888-893
    • /
    • 2008
  • In This paper proposes the control algorithm for quadruped robots on irregularly sloped uneven surface. Body balance is important in stable running locomotion. Since the body balance is determined by the forces applied at the feet during touchdown phase, the ground reaction force is controlled for stable running. To control the forces at each foot, the desired force is generated. The generated desired force is compared with actual contact force, then, the difference between them modifies the foot trajectory. The desired force is generated by combination of the rate change of the angular and linear momentum at flight. Then the rate change of momentum determines each force distribution. The distribution of the force is carried out by fuzzy logic. The computer simulation is carried out with the commercial software RecurDyn$^{(R)}$. Dynamic model simulation program show that the stable running on the irregularly sloped uneven surface are accomplished by the proposed method.

  • PDF

공급사슬 운영에서의 수요와 공급 균형에 관한 연구 (Balancing between Supply and Demand in Supply Chain Operating)

  • 조민관;이영해
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2004년도 추계학술대회 및 정기총회
    • /
    • pp.371-374
    • /
    • 2004
  • The ultimate purpose of Supply Chain Management (SCM) is maximizing the profits of the overall Supply Chain (SC) through increasing customer satisfaction and decreasing operating cost. It can be successfully accomplished only when SC system balances demands with supply activities coordinated by aggregate planning, mid-term level of Supply Chain Planning(SCP). However, the existing measures to mainly estimate the specific function of SCM are not enough to evaluate the state of SC with respect to the balance between supply and demand in operating. To solve this problem, we develop a new SC performance measure, Balancing Point, using momentum concept. a fundamental knowledge of physics. Momentum concept can explain the relation among objects so that it can consider the balance between supply and demand in SC operating. The developed measure can not only consider the current state of the SC system but also take planned but not executed supply activities and upcoming demands into account. Therefore, using Balancing point, we can be aware of the unbalanced state of SC in advance.

  • PDF

평균대 옆공중돌기 동작의 운동역학적 분석 (Kinetic Analysis of the Salto Side-Ward Tucked on the Balance Beam)

  • 여홍철;장재관
    • 한국운동역학회지
    • /
    • 제18권3호
    • /
    • pp.61-69
    • /
    • 2008
  • 본 연구는 평균대에서 필수요구조건(EGR)에 해당되는 동작인 옆공중돌기 동작의 성공과 실패를 운동역학적으로 비교 분석하였다. 연구대상은 국가대표 선수들로 하였으며, 연구의 목적은 기술의 실수 요인을 규명하여 지도자 및 선수들에게 과학적으로 유용한 정보를 제공하는데 있다. 성공시 옆공중돌기 동작의 신체중심은 평균대 중앙 중심으로 좌-우축으로 벗어나는 결과가 나타나고 동작의 특성상 회전하는 방향으로 신체중심이 이동한다는 것을 나타내고 있다. 도약구간인 event2와 3에서 성공시 상 하 변화가 크게 나타나 체공시간을 높이는 것으로 투사변인이 실패시 보다 높게 나타나는 결과를 뒷받침 해 주고 있다. 또한 공중 비약을 위해 다리를 차는 동작을 하는 오른쪽 고관절 각도와 속도, 각속도가 실패시 보다 성공시 동작에서 모두 크게 나타나 도약의 최적조건을 수행하고 있다. 어깨를 중심으로 상지분절의 속도와 견관절 각속도를 크게 함으로써 운동량을 증가시켰으며 그중 오른쪽 견관절 각속도가 크게 나타난 이유는 오른쪽 다리를 잡기 위한 결과이다. 옆 공중돌기 동작에서 실패시 보다 성공시 동작에서 x축을 중심으로 각운동량이 크게 나타나 공중 비행 동작은 x축을 중심으로 각운동량을 크게 하는 것이 중요한 요인으로 나타났으며 옆공중돌기 특성상 y축과 z축으로 각운동량도 적정한 비율로 동작이 이루어져야 성공적인 동작을 만들수 있다.