• Title/Summary/Keyword: Momentum Wheel

Search Result 55, Processing Time 0.027 seconds

Development of a Hardware-In-Loop (HIL) Simulator for Spacecraft Attitude Control Using Momentum Wheels

  • Kim, Do-Hee;Park, Sang-Young;Kim, Jong-Woo;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.347-360
    • /
    • 2008
  • In this paper, a Hardware-In-the-Loop simulator to simulate attitude control of space craft using momentum wheels is developed. The simulator consists of a spherical air bearing system allowing rotation and tilt in all three axes, three momentum wheels for actuation, and an AHRS (Attitude Heading Reference System). The simulator processes various types of data in PC104 and wirelessly communicates with a host PC using TCP/IP protocol. A simple low-cost momentum wheel assembly set and its drive electronics are also developed. Several experiments are performed to test the performance of the momentum wheels. For the control performance test of the simulator, a PID controller is implemented. The results of experimental demonstrations confirm the feasibility and validity of the Hardware-In-the-Loop simulator developed in the current study.

Reaction Wheel Momentum Dumping with Magnetic Torquer Failure (자기토커 고장시 반작용휠 모멘텀 덤핑)

  • Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.371-378
    • /
    • 2019
  • High precision pointing satellite uses the reaction wheels for the attitude control and their momentum dumping is performed by the three magnetic torquers. In this paper, the effects of one magnetic torquer's failure on the momentum dumping will be reviewed. When the satellite on the high inclination angle orbit holds LVLH (Local Vertical Local Horizontal) attitude, pitch axis magnetic torquer failure causes the momentum dumping failure. But in case of other torquer's failure, momentum dumping is still possible with degraded dumping performance. When pitch axis magnetic torquer fails, momentum dumping is possible by changing the satellite attitude. This paper propose the satellite attitude change to make the momentum dumping possible when pitch axis magnetic torquer fails. In addition, if torquer arrangement is modified, momentum dumping is always possible regardless of any torquer's failure.

Sliding Mode Attitude Control for Momentum-Biased Spacecraft

  • Bang, Hyo-Choong;Loh, Young-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.13-23
    • /
    • 2002
  • In this paper, we present a sliding mode control strategy for the re-orientation maneuver of rigid spacecraft containing rotating wheels. The wheels are considered as internal devices, and external inputs are employed for generation of control commands. The formulation is developed for a general case while particular example is applied to pitch bias momentum spacecraft with a single momentum wheel. The resultant control commands are used to take the gyroscopic effects into account which are caused by the rotating wheels. The controller designed demonstrates that the nutational motion of the pitch bias momentum spacecraft is effectively controlled. It is also assumed that the external control torque device is of on-off nature, and pulse width modulation technique is applied to construct proper control torque history.

COMS THRUSTER SET SELECTION FOR WHEEL OFFLOADING

  • Park, Bong-Kyu;Yang, Koon-Ho;Lee, Sang-Cherl;Park, Young-Woong
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.191-195
    • /
    • 2006
  • This paper discusses wheel offloading approaches of COMS which has a single side solar array system for the accommodation of the optical payloads. First of all, in an effort to reduce fuel consumption and reflect practical implementation point of view, thruster sets for wheel offloading are proposed based on numerical analyses taking into account the COMS configuration. In this analysis, it is assumed that the wheel offloading is conducted twice a day. Secondly, in order to evaluate the effectiveness of the proposed thruster sets, orbit simulations have been conducted for several wheel offloading approaches and compared.

  • PDF

Low Earth Orbit Satellite Momentum Dumping Using Thruster (추력기를 이용한 저궤도 위성 모멘텀 덤핑)

  • Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.147-158
    • /
    • 2020
  • In this paper, we will review the thruster based reaction wheel momentum dumping method for low Earth orbit satellite. Thruster based momentum dumping is widely used in GEO satellites by performing momentum dumping and attitude control using thrusters at the specific time. LEO satellite should perform momentum dumping at any time, thus it is not appropriate to use GEO satellite's momentum dumping method. In this research, we will review the method for LEO satellite, which perform momentum dumping always and use reaction wheels for attitude control during dumping. To reduce thruster's valve on and off counts, we propose to use the maximum pulse width for thruster operation. To prevent attitude error increase by thrusters, we adjust the thruster operation interval. Through simulation, we verify the proposed method's effects.

Ground Software Validation Test for Wheel Off-loading of COMS (통신해양기상위성의 휠오프로딩 지상국 소프트웨어 검증시험)

  • Park, Young-Woong;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.51-56
    • /
    • 2010
  • There are two main software in COMS ground station at the normal mode operation - stationkeeping and wheel off-loading. In this paper, ground software validation test for wheel off-loading is summarized and described. The wheel off-loading was performed the design change from E3000 heritage and analyzed. The wheel off-loading of ground software has two part; one is wheel off-loading management for parameters change at the thruster set switching time and the other is wheel off-loading set-point being sent to satellite for the reference momentum.

Development of a Labyrinth Seal for a Momentum Wheel (모멘텀 휠용 라비린스실 개발)

  • Cheon, Dong-Ik;Oh, Hwa-Suk;Lee, Sangchul;Byun, Sang-Kyun;Park, Jong-Seung;Kang, Min-Young;Rhee, Seung-Woo
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.4
    • /
    • pp.37-41
    • /
    • 2007
  • Labyrinth seal is most common way to protect the bearings installed in Reaction wheel. In spite of wide applications, no such research was found about the sealing utility of the Labyrinth seal in the condition of vacuum and high temperature. In this research, we tried to verify the utility of Labyrinth seal. Numerical analysis had been executed to predict the benefit of the Labyrinth seal and also experiments were performed to verify the utilization. Two Bearings were installed at the vacuum chamber, one was assembled with Labyrinth seal and the other was stand alone. After executing the vacuum test, it was found to be the stand alone bearing had lost more weight than the one that was assembled with the labyrinth seal. In this result, it is verified that the Labyrinth seal has useful function to preserve the lubricant that affects to the life-cycle of the Bearing.

  • PDF

Relationship between Magnetic Torquer Arrangement and Reaction Wheel Momentum Dumping Performance (자기토커 배치와 반작용휠 모멘텀 덤핑 성능 관계)

  • Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.760-766
    • /
    • 2018
  • Due to external disturbances on the satellite, unwanted momentum is accumulated on reaction wheels. To remove this momentum, three magnetic torquers which are installed along the satellite's axes are used. The magnetic torquers generated torque indirectly by interactions with the earth's magnetic field. Thus, during momentum dumping, we should consider both the magnetic torquer and the earth's magnetic field generated on the magnetic torquers at the same time. When low earth orbit satellite with high inclination angle holds nadir pointing attitude, weak earth's magnetic field is generated along the satellite's pitch axis. In this case, one magnetic torquer is overloaded and momentum dumping performance is degraded. This research will review the method to improve the momentum dumping performance by adjusting magnetic torquers arrangement.

Fault Diagnosis of High-Speed Rotating Machinery With Control Moment Gyro for Medium and Large Satellite Using Envelope Spectrum Analysis (포락선 스펙트럼 분석을 이용한 중대형 위성용 제어모멘트자이로의 고속회전체 고장진단)

  • Kang, Jeong-Min;Song, Tae-Seong;Lee, Jong-Kuk;Song, Deok-Ki;Kwon, Jun-Beom;Lee, Il;Seo, Joong-Bo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.6
    • /
    • pp.413-422
    • /
    • 2022
  • In this paper, the fault analysis of the momentum wheel, which is a high-speed rotary machinery of 'Control Moment Gyro' for medium and large satellite, was described. For fault diagnosis, envelope spectrum analysis was performed using Hilbert transformation method and signal demodulation method to find the impact signals periodically generated from amplitude modulated signals. Through this, the fault of the momentum wheel was diagnosed by analyzing whether there was a harmonic component of the rotational frequency and a bearing fault frequency in a specific frequency band with a high peak.

A STUDY ON THE EAST/WEST STATION KEEPING PLANNING CONSIDERING WHEEL OFF-LOADING

  • Lee, Sang-Cherl;Park, Bong-Kyu;Kim, Bang-Yeop;Ju, Gwang-Hyeok;Yang, Koon-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.263-266
    • /
    • 2006
  • Now, on the developing COMS(Communication, Ocean and Meteorological Satellite) has solar panel on the South panel only. Therefore, the wheel off-loading has to be performed periodically to reduce a induced momentum energy by a asymmetric solar panel. One of two East/West station keeping maneuver to correct simultaneously longitude and eccentricity, orbit corrections may be performed during one of the two wheel off-loading manoeuvres per day to get enough observation time for meteorological and ocean sensor. In this paper, we applied a linearized orbit maneuver equation to acquire maneuver time and delta-V. Nonlinear simulation for the station keeping is performed and compared with general station keeping strategy for fuel reduction.

  • PDF