• Title/Summary/Keyword: Momentum Wheel

Search Result 55, Processing Time 0.026 seconds

A Study on the Wheel Momentum Management Logic of a Geosynchronous Satellite (정지궤도위성의 휠모멘텀 관리 로직 연구)

  • Park, Yeong Ung;Nam, Mun Gyeong;Bang, Hyo Chung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.85-94
    • /
    • 2003
  • A geosynchronous Satellite in general, has two momentum management logics to maintain its wheel momentum tin the stable region. The one is applied in order to control accumulative wheel momentum in the momentum dumping mode and the other is utilized in order to control attitude errors during the stationkeeping. In this paper, the momentum management logics are explained for dumping/sationkeeping mode and the logics are verified by simulation on the 3 attitude subsystem.

A Study on HAUSAT-2 Momentum Wheel Start-up Method (초소형위성 HAUSAT-2 모멘텀 휠 Start-up 방안 연구)

  • Lee, Byung-Hoon;Kim, Soo-Jung;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.73-80
    • /
    • 2005
  • This paper addresses a newly proposed start-up method of the HAUSAT-2 momentum wheel. The HAUSAT-2 is a 25kg class nanosatellite which is stabilized to earth pointing by 3-axis active control method. A momentum wheel performs two functions. It provides a pitch-axis momentum bias while measuring satellite pitch and roll attitude. Pitch control is accomplished in the conventional way by driving a momentum wheel in response to pitch attitude errors. Precession control and nutation damping are provided by driving the pitch axis magnetic torquer. A momentum wheel is nominally spinning at a particular rate and changes speed. This simulation study investigates the feasibility and performance of a proposed strategy for starting-up the wheel. A proposed strategy to start-up the wheel shows that a pitch momentum wheel can be successfully started-up to its nominal speed from rest and be stabilized to nadir pointing.

Development of Connector Sealing Method for Maintaining of Vacuum in the Momentum Wheel (모멘텀 휠의 내부 진공 유지를 위한 커넥터 밀봉방법 개발)

  • Cheon, Dong-Ik;Gong, Sung-Chul;Oh, Hwa-Suk;Lee, Seung-Wu
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.4
    • /
    • pp.25-30
    • /
    • 2008
  • In general, we utilize momentum wheel to control spacecraft. It needs vacuum test to analyze the effect of space environments. The conventional vacuum connector which is composed of steel has problems for test with built in momentum wheel because of weight, thermal expansion, etc. We suggest possibility to manufacture the vacuum connector using aluminum mount, epoxy and industrial D-Sub considering cost, weight. We verify the performance through vacuum test.

  • PDF

Study on Triaxiality Velocity of COMS induced by Wheel Off-loading

  • Park, Young-Woong;Kim, Dae-Kwan;Lee, Hoon-Hee
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.36.3-36.3
    • /
    • 2008
  • KARI (Korea Aerospace Research Institute) is going to launch a Communication, Ocean and Meteorological Satellite (COMS) at summer of 2009. It will be first thing to be developed for a geostationary satellite through domestic technology. Of course, KARI has performed this development program with EADS Astrium in France since 2005. COMS has the non-symmetric configuration that the solar array is only attached on the south panel. Due to the configuration, momentum of satellite will be rapidly accumulated induced by solar pressure and then 3 wheels of large momentum are located on roll-yaw plane for attitude control. Therefore, to prevent the saturation of wheel momentum, wheel off-loading will be performed two times per day during 10 minutes for each one. At the moment, translation movement on 3-axes direction appears because of using thrusters. In this paper, strategy of the wheel off-loading and triaxiality which is the translation effect on 3-axes are introduced. Consequently, the result of optimized triaxiality considering the wheel off-loading strategy is summarized.

  • PDF

Rapid Initial Detumbling Strategy for Micro/Nanosatellite with Pitch Bias Momentum System (피치 바이어스 모멘텀 방식을 사용하는 초소형 위성의 초기 자세획득 방안 연구)

  • Lee, Byeong-Hun;Choe, Jeong-Won;Jang, Yeong-Geun;Yun, Mi-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.65-73
    • /
    • 2006
  • When a satellite separates from the launch vehicle, an initial high angular rate or a tip-off rate is generated. B-dot logic is generally used for controlling the initial tip-off rate. However, it has the disadvantage of taking a relatively long time to control the initial tip-off rate. To solve this problem, this paper suggests a new detumbling control method to be able to adapt to micro/nanosatellite with the pitch bias momentum system. Proposed detumbling method was able to control the angular rate within 20 minutes which is significantly reduced compared to conventional methods. Since the previous wheel start-up method cannot be used if the detumbling controller proposed by this paper is used, a method is also proposed for bringing up the momentum wheel speed to nominal rpm while maintaining stability in this paper. The performance of the method is compared and verified through simulation. The overall result shows much faster control time compared to the conventional methods, and achievement of the nominal wheel speed and 3-axes stabilization while maintaining stability.

Study on the wheel allocation and the wheel momentum off-loading for COMS having asymmetric solar array configuration (비대칭 태양전지판 형상의 천리안위성 휠배치와 휠모멘텀조정에 관한 연구)

  • Park, Young-Woong;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.57-63
    • /
    • 2013
  • The mission of a lot of satellites on geostationary orbit is the communication and/or the broadcasting. These satellites need a big power, so these have a large solar array. Recently, the new satellite for Earth environment monitoring is developing on geostationary orbit. The payload of Earth monitoring satellite requires better thermal condition on detector. Therefore this satellite uses a boom for the attitude stability instead of rejecting one-side solar array as a heat source. The other hand, it uses some momentum wheels being a more momentum capacity to control the large disturbance by solar pressure due to the asymmetric solar array configuration. In this paper, the analysis on the wheel allocation and the wheel off-loading for COMS is summarized and the results are verified by telemetry of COMS. COMS has no boom and a perfectly asymmetric solar array configuration, and it is operating well on geostationary orbit.

Roll/Yaw Momentum Management Method of Pitch Momentum Biased Spacecraft (피치 모멘텀 바이어스 위성시스템의 롤/요축 모멘텀 제어방식)

  • Rhee, Seung-Wu;Ko, Hyun-Chul;Jang, Woo-Young;Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.669-677
    • /
    • 2009
  • In general, the pitch momentum biased system that induces inherently nutational motion in roll/yaw plane, has been adapted for geosynchronous communications satellites. This paper discusses the method of roll attitude control using yaw axis momentum management method for a low earth orbit(LEO) satellite which is a pitch momentum biased system equipped with only two reaction wheels. The robustness of wheel momentum management method with PI-controller is investigated comparing with wheel torque control method. The transfer function of roll/yaw axis momentum management system that is useful for attitude controller design is derived. The disturbance effect of roll/yaw axis momentum management system for attitude control is investigated to identify design parameters such as magnitude of momentum bias and to get the insight for controller design. As an example, the PID controller design result of momentum management system for roll/yaw axis control is provided and the simulation results are presented to provide further physical insight into the momentum management system.

Design of Control Logic, and Experiment for Large Torque CMG (대형 토크 제어모멘트자이로의 제어로직 설계 및 실험)

  • Lee, Jong-Kuk;Song, Tae-Seong;Kang, Jeong-Min;Song, Deok-Ki;Kwon, Jun-Beom;Seo, Joong-Bo;Oh, Hwa-Suk;Cheon, Dong-Ik;Park, Sang-Sup;Lee, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.291-299
    • /
    • 2021
  • This paper presents the control logic for the momentum wheel and gimbals in the CMG system. First, the design of the control logic for the momentum wheel is described in consideration of the power consumption and stability. Second, the design of the control logic for the gimbals considering the resonance of the vibration absorber and stability is explained. Third, the measurement configuration for the force and torque generated by the CMG is described. Fourth, the results of the frequency and time response test of the momentum wheel and gimbals are shown. Last, the measurements of the force and the torque generated through the CMG are explained.

A study on the 3-axis attitude stabilization of Koreasat (무궁화 방송통신 위성의 3축 자세 안정화 장치에 관한 연구)

  • 진익민;백명진;김진철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.793-798
    • /
    • 1993
  • In this study the attitude control of the KOREASAT is investigated. The KOREASAT is a geostationary satellite and its 3 attitude angles, namely, roll, pitch and yaw angles, are stabilized by using the 3-axis stabilization technique. In the pitch control loop, the pitch attitude angle received from the earth sensor is processed in the attitude processing electronics by using PI type control logic, and the control command is sent to the momentum wheel assembly to generate the control torque by varying the wheel rate. The roll/yaw attitude control is performed by activating a magnetic torquer or by firing appropriate thrusters. The magnetic torquer interacts with the earth magnetic field to produce the control torque, and the thrusters are used to control the larger roll attitude errors. In this study dynamic modelling of the satellite is performed. And the earth sensor, the momentum wheel, and the magnetic torquer are mathematically modelled. The 3-axis attitude control logic is implemented to make the closed-loop system and simulations are carried out to verify the implemented control laws.

  • PDF

Study on The Attitude Stabilization Techniques of Leo Satellites

  • Hwan, Lho-Young;Yong, Jung-Kang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.56.5-56
    • /
    • 2001
  • In the three axis control of satellite by using reaction wheel and gyro, a reaction wheel produces the control torque by the wheel speed or momentum, and a gyro carries out measuring of the attitude angle and the attitude angular velocity In this study, dynamic modelling of the Low Earth Orbit (LEO) is consisted of the one from the rotational motion of the satellite with the basic rigid body and a flexible body model, and the gyro in addition to the reaction wheel model. The results obtained by the robust controller are compared with those of the PI (Proportional and Integration) controller which is commonly used for the stabilizing satellite.

  • PDF