본 논문에서는 순차적 학습 방법에서의 동적 모멘트를 제안한다. 동적 모멘트에서의 가변적인 모멘트를 이용하여 수렴 속도와 학습 성능을 향상시키며 회귀율에서도 이를 확인할 수 있다 제안된 학습 방법은 기존의 정적모멘트와는 달리 수렴 정도에 따라 현재의 학습에 과거의 학습률을 달리 반영하는 방법이다. 기존의 정적 상수로 정의된 모멘트가 전체 학습에 동등하게 영향을 주는 반면 제안된 동적모멘트를 이용한 학습 방법은 학습 수행에 따라 동적으로 모멘트를 변경함으로써 수렴 속도와 학습 성능을 효과적으로 제어할 수 있다. 이전의 분류문제와 회귀문제의 분리확인과는 달리 본 논문에서는 제안된 동적모멘트의 성능과 회귀율을 동시에 확인한다. 본 논문에서 사용한 회귀방법은 RMS 오류율을 사용하였으며 제안된 학습방법인 동적모멘트를 SVM(Support Vector Machine)의 순차 학습방법인 KA(Kernel Adatron)과 KR(Kernel Relaxation)에 적용하여 RMS 오류율을 확인하였다. 공정한 학습 성능 평가를 위해 신경망 분류기표준평가데이터인 SONAR 데이터를 이용하였으며 실험 결과 동적모멘트를 이용한 학습 성능과 수렴 속도 및 RMS 오류율이 정적모멘트를 이용한 학습방법보다 향상되었음을 확인하였다.
본 논문에서는 커널완화법과 동적모멘트를 이용한 support vector machines의 학습성능 개선을 제안하였다. 제안된 학습 방법은 기존의 정적모멘트와는 달리 수렴 정도에 따라 현재의 학습에 과거의 학습 속성을 반영하는 동적모멘트 방법이다. 기존의 정적 상수로 정의된 모멘트가 전체 학습에 동등하게 영향을 주는 반면 제안된 동적모멘트를 이용한 학습방법은 학습 수행에 따라 동적으로 모멘트를 변경함으로써 수렴속도와 학습 성능을 효과적으로 제어할 수 있다. 제안된 학습법을 support vector machine의 새로운 순차 학습 방법인 커널완화법에 적용하였다. 신경망 분류기 표준 평가 데이터인 SONAR 데이터를 이용하여 실험한 곁과 동적모멘트를 이용한 방법이 수렴속도와 학습 성능면에서 기존의 커널완화법과 정적모멘트를 이용한 학습법에 비해 향상된 성능을 보이는 것을 확인하였다.
A batch-mode algorithm is proposed to increase the speed of learning in the error backpropagation algorithm with variable learning rate and variable momentum parameters in classification problems. The objective function is normalized with respect to the number of patterns and output nodes. Also the gradient of the objective function is normalized in updating the connection weights to increase the effect of its backpropagated error. The learning rate and momentum parameters are determined from a function of the gradient norm and the number of weights. The learning rate depends on the square rott of the gradient norm while the momentum parameters depend on the gradient norm. In the two typical classification problems, simulation results demonstrate the effectiveness of the proposed algorithm.
이 논문에서는 오차 역전파 학습 알고리듬의 학습 속도를 향상시키기 위한 새로운 학습 방법을 제안한다. 제안하고자 하는 방법은 시그모이드 형태를 갖는 신경회로망의 활성화 함수(activation function) 자체에 고차항(higher order)을 적절히 이용하여 초기 학습 단계에서 발생할 수 있는 조기 포화(premature saturation) 현상을 계산량의 큰 증가 없이 효과적으로 대처할 수 있다. 고차항을 이용함으로써 은닉층 활성화 함수의 도합수가 작은 값으로 감소함에 따라 신경망의 연결 강도를 학습시키는 학습율은 적응적으로 큰 값을 갖게 된다. 또한, 은닉층에 고차항을 이용하는 제안한 방법에 모멘텀(momentum) 학습 알고리듬을 결합하는 새로운 hybrid 학습 방법을 제안한다. 컴퓨터 모의 실험을 통해 제안하고자 하는 학습 방법과 기존의 방법들과의 학습 속도 성능을 비교한다.
이 논문은 진화 프로그래밍과 개선된 역전파 알고리즘을 이용한 에지 검출 방법을 제안한다. 진화 프로그래밍은 알고리즘의 성능저하와 계산비용을 고려하여 교차 연산은 수행하지 않고, 선택연산자와 돌연변이 연산자를 사용한다. 개선된 역전파 알고리즘은 학습단계에서 연결강도를 변화시킬 때 이전학습단계의 연결강도를 보조적으로 활용하는 방법이다. 이 개선된 역전파 알고리즘은 학습률 $\alpha$를 작은값으로 설정하기 때문에 각 학습단계에서의 연결강도 변화량이 기존의 방법에 비해 상대적으로 줄어들게 되어 학습이 느려지는 문제점을 해결하였다. 실험결과 학습시간과 검출률에 있어서 GA-BP(GA : Genetic Algorithm BP : Back-Propagation)를 이용한 방법보다 제안한 EP-MBP(EP : Evolutionary Programming, MBP :Momentum Back-Propagation)를 이용하여 학습시킨 방법이 학습시간의 단축과 효율적인 에지 검출 결과를 얻을 수 있었다.
This paper proposes an efficient feature extraction of the image data using nonlinear principal component analysis neural networks of a new learning algorithm. The proposed method is a learning algorithm with momentum for reflecting the past trends. It is to get the better performance by restraining an oscillation due to converge the global optimum. The proposed algorithm has been applied to the cancer image of $256{\times}256$ pixels and the coin image of $128{\times}128$ pixels respectively. The simulation results show that the proposed algorithm has better performances of the convergence and the nonlinear feature extraction, in comparison with those using the backpropagation and the conventional nonlinear PCA neural networks.
This paper proposes the enhanced REF network, which arbitrates learning rate and momentum dynamically by using the fuzzy system, to arbitrate the connected weight effectively between the middle layer of REF network and the output layer of REF network. ART2 is applied to as the learning structure between the input layer and the middle layer and the proposed auto-turning method of arbitrating the learning rate as the method of arbitrating the connected weight between the middle layer and the output layer. The enhancement of proposed method in terms of learning speed and convergence is verified as a result of comparing it with the conventional delta-bar-delta algorithm and the REF network on the basis of the ART2 to evaluate the efficiency of learning of the proposed method.
This study tried to find out the effect to types of test items upon the momentum effect. The previous studies showed that the momentum effect is influenced by stduents' congnitive levels and the abstractness of test items. In this study focused on the types of test items The test items are divided into 4 different types of quantitative and qualitative, verbal and image. The result showed that qualitative items showed a longer momentum effect than quantitative ones. The image items and verbal items did not show significant difference in the duration of momentum effect. The interpretation of this would need a careful psychological analysis. Anyhow, this result reconfirmed the existence of the momentum effect and showed that the study on the momentum effect could be a Significant research paradigm.
딥러닝(Deep Learning)은 퍼셉트론을 기반으로 하고 있으며 현재에는 이미지 인식, 음성 인식, 객체 검출 및 약물 개발 등과 같은 다양한 영역에서 사용되고 있다. 이에 따라 학습 알고리즘이 다양하게 제안되었고 신경망을 구성하는 뉴런수도 연구자마다 많은 차이를 보이고 있다. 본 연구는 현재 대표적으로 사용되고 있는 확률적 경사하강법(SGD), 모멘텀법(Momentum), AdaGrad, RMSProp 및 Adam법의 뉴런수에 따른 학습 특성을 분석하였다. 이를 위하여 1개의 입력층, 3개의 은닉층, 1개의 출력층으로 신경망을 구성하였고 활성화함수는 ReLU, 손실 함수는 교차 엔트로피 오차(CEE)를 적용하였고 실험 데이터셋은 MNIST를 사용하였다. 그 결과 뉴런수는 100~300개, 알고리즘은 Adam, 학습횟수(iteraction)는 200회가 딥러닝 학습에서 가장 효율적일 것으로 결론을 내렸다. 이러한 연구는 향후 새로운 학습 데이터가 주어졌을 경우 개발될 알고리즘과 뉴런수의 기준치에 함의를 제공할 것이다.
CP(Counterpropagation) 알고리즘은 Kohonen의 경쟁 네트워크와 Grossberg의 아웃스타(Outstar) 구조의 결합으로 이루어진 것으로 패턴 매칭, 패턴 분류, 통계적인 분석 및 데이터 압축 등 활용분야가 다양하고, 다른 신경망 모델에 비해 학습이 매우 빠르다는 장점이 있다. 그러나 CP 알고리즘은 충분한 경쟁층의 수가 설정되지 않아 경쟁층에서 학습이 불안정하고, 다양한 패턴으로 구성된 경우에는 패턴들을 정확히 분류할 수 없는 경우가 발생한다. 그리고 CP 알고리즘은 출력층에서 연결 강도를 조정할 때, 학습률에 따라 학습 및 인식 성능이 좌우된다. 본 논문에서는 효과적인 패턴인식을 위해 다수 경쟁층을 설정하고, 입력 벡터와 승자 뉴런의 대표 벡터간의 차이와 승자 뉴런의 빈도수를 학습률 조정에 반영하고 학습률을 동적으로 조정하여 경쟁층에서 안정적으로 학습되도록 하고, 출력층의 연결강도를 조정할 때 모멘텀(Momentum) 방법을 적용한다. 제안된 CP 학습 성능을 확인하기 위해서 실제 여권에서 추출된 개별 코드를 대상으로 실험한 결과, 개선된 CP 알고리즘이 기존의 CP 알고리즘보다 학습 성능, 분류의 정확성 및 인식 성능이 개선된 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.