• Title/Summary/Keyword: Moment equation

Search Result 583, Processing Time 0.028 seconds

Analysis of free vibration of beam on elastic soil using differential transform method

  • Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.51-62
    • /
    • 2006
  • Differential transform method (DTM) for free vibration analysis of both ends simply supported beam resting on elastic foundation is suggested. The fourth order partial differential equation for free vibration of the beam resting on elastic foundation subjected to bending moment, shear and axial compressive load is obtained by using Winkler hypothesis and small displacement theory. It is assumed that the material is linear-elastic, and that axial load and modulus of subgrade reaction to be constant. In the analysis, shear and axial load effects are considered. The frequency factors of the beam are calculated by using DTM due to the values of relative stiffness; the results are presented in graphs and tables.

Development of 3-Dimensional Simulator for a Biped Robot (이족 보행로봇의 3차원 모의실험기 개발)

  • Noh, Kyung-Kon;Kim, Jin-Geol;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2438-2440
    • /
    • 2004
  • This study is concerned with development of 3-Dimensional simulator of a biped robot that has a prismatic balancing weight or a revolute balancing weight. The dynamic stability equation of a biped robot which have a prismatic balancing weight is conditional linear but a walking robot's stability equation with a revolute balancing weight is nonlinear. To get a stable gait of a biped robot, stabilization equations with ZMP (Zero Moment Point) are modeled as non-homogeneous second order differential equations for each balancing weight type. A trajectory of balancing weight can be directly calculated with the FDM (Finite Difference Method) solution of the linearized differential equation. In this paper, the 3-Dimensional graphic simulator is programmed to get and calculate the desired ZMP and the actual ZMP. Walking of 4 steps was simulated and verified. This balancing system will be applied to a biped humanoid robot, which consist Begs and upper body, at future work.

  • PDF

Nonlinear ship rolling motion subjected to noise excitation

  • Jamnongpipatkul, Arada;Su, Zhiyong;Falzarano, Jeffrey M.
    • Ocean Systems Engineering
    • /
    • v.1 no.3
    • /
    • pp.249-261
    • /
    • 2011
  • The stochastic nonlinear dynamic behavior and probability density function of ship rolling are studied using the nonlinear dynamical systems approach and probability theory. The probability density function of the rolling response is evaluated through solving the Fokker Planck Equation using the path integral method based on a Gauss-Legendre interpolation scheme. The time-dependent probability of ship rolling restricted to within the safe domain is provided and capsizing is investigated from the probability point of view. The random differential equation of ships' rolling motion is established considering the nonlinear damping, nonlinear restoring moment, white noise and colored noise wave excitation.

Stability Evaluation & Determination of Critical Buckling Load for Non-Linear Elastic Composite Column (비선형 탄성 복합재료 기둥의 임계 좌굴하중 계산 및 안정성 평가)

  • 주기호;정재호;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.215-219
    • /
    • 2003
  • Buckling and post-buckling Analysis of Ludwick type and modified Ludwick type elastic materials was carried out. Because the constitutive equation, or stress-strain relationship is different from that of linear elastic one, a new governing equation was derived and solved by $4^{th}$ order Runge-Kutta method. Considered as a special case of combined loading, the buckling under both point and distributed load was selected and researched. The final solution takes distinguished behavior whether the constitutive relation is chosen to be modified or non-modified Ludwick type as well as linear or non-linear. We also derived strain energy function for non-linear elastic constitutive relationship. By doing so, we calculated the criterion function which estimates the stability of the equilibrium solutions and determines critical buckling load for non-linear cases. We applied this theory to the constitutive relationship of fabric, which also is the non-linear equation between the applied moment and curvature. This results has both technical and mathematical significance.

  • PDF

Bond strength of reinforcement in splices in beams

  • Turk, Kazim;Yildirim, M. Sukru
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.469-478
    • /
    • 2003
  • The primary aim of this study was to investigate the bond strength between reinforcement and concrete. Large sized nine beams, which were produced from concrete with approximately ${f_c}^{\prime}=30$ MPa, were tested. Each beam was designed to include two bars in tension, spliced at the center of the span. The splice length was selected so that bars would fail in bond, splitting the concrete cover in the splice region, before reaching the yield point. In all experiments, the variable used was the reinforcing bar diameter. In the experiments, beam specimens were loaded in positive bending with the splice in a constant moment region. In consequence, as the bar diameter increased, bond strength and ductility reduced but, however, the stiffnesses of the beams (resistance to deflection) increased. Morever, a empirical equation was obtained to calculate the bond strength of reinforcement and this equation was compared with Orangun et al. (1977) and Esfahani and Rangan (1998). There was a good agreement between the values computed from the predictive equation and those computed from equations of Orangun et al. (1977) and Esfahani and Rangan (1998).

Effects of Specimen Length on Flexural Compressive Strength of Concrete (부재의 길이가 콘크리트의 휨압축강도에 미치는 영향)

  • 김진근;이성태;이태규
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.63-71
    • /
    • 1999
  • In evaluating the ultimate strength of a section for a reinforced concrete flexural member, the effect of member length is not usually considered, even though the strength tends to decrease with increase of member length. In this paper the influence of specimen length on flexural compressive strength of concrete was evaluated. For this purpose, a series of C-shaped specimens subjected to axial compression and bending moment were tested using four different length-to-depth ratios (from 1,2,3 and 4) of specimens with compressive strength of 590 kgf/$\textrm{cm}^2$. Results indicate that for the region of h/c <3.0 the reduction in flexural compressive strength with increase of length-to-depth ratios was apparent. A model equation was depth of an equivalent rectangular stress block was larger than that by ACI. It was also founded that the effect of specimen length on ultimate strain was negligible. Finally more general model equation is also suggested.

Evaluation of energy response of space steel frames subjected to seismic loads

  • Ozakgul, Kadir
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.809-827
    • /
    • 2015
  • In this paper, seismic energy response of inelastic steel structures under earthquake excitations is investigated. For this purpose, a numerical procedure based on nonlinear dynamic analysis is developed by considering material, geometric and connection nonlinearities. Material nonlinearity is modeled by the inversion of Ramberg-Osgood equation. Nonlinearity caused by the interaction between the axial force and bending moment is also defined considering stability functions, while the geometric nonlinearity caused by axial forces is described using geometric stiffness matrix. Cyclic behaviour of steel connections is taken into account by employing independent hardening model. Dynamic equation of motion is solved by Newmark's constant acceleration method in the time history domain. Energy response analysis of space frames is performed by using this proposed numerical method. Finally, for the first time, the distribution of the different energy types versus time at the duration of the earthquake ground motion is obtained where in addition error analysis for the numerical solutions is carried out and plotted depending on the relative error calculated as a function of energy balance versus time.

On the Unstable Behavior of Roll Moment due to the Manoeuvering of a Ship (조종운동이 유발하는 횡경사모우멘트의 불안정거동에 관한 연구)

  • 윤점동;손경호
    • Journal of the Korean Institute of Navigation
    • /
    • v.4 no.1
    • /
    • pp.51-61
    • /
    • 1980
  • In order to evaluate rolling characteristics of high speed container carrier the author developed yaw-sway-rudder coupled rool equation, which is likely to be 5th order differential equation. The free rolling time history with particular reference to automatic steering, was computed upon the base of the yaw-sway-rudder coupled roll equation. The computed result explained effects of $C_1$ and $C_2$ on rolling behaviors and furthermore the effect of $C_2$ proved to be very effective where $C_1$ and $C_2$ are yaw gin constant and yaw-rate gain constant of auto-pilot respectively. Computation was carried out using Matsumoto's data of hydrodynamic force derivatives of 5 meter long container model.

  • PDF

Analyzing lateral strength and failure modes in masonry infill frames: A mesoscale study

  • Sina GanjiMorad;Ali Permanoon;Maysam Azadi
    • Earthquakes and Structures
    • /
    • v.27 no.2
    • /
    • pp.113-126
    • /
    • 2024
  • In this study, the failure mechanisms of masonry-infilled frames, commonly employed in modern construction, are analyzed at the mesoscale. An equation has been formulated to predict various failure modes of masonry-infilled frames by examining 1392 frames. The equation takes into account variables such as the height-to-width ratio, compressive strength of the masonry prism, and plastic moment capacity of the frame section. The study reveals that the compressive strength of the masonry prism and the height-to-width ratio exert the most significant influence on the lateral strength of masonry-infilled frames with a height-to-width ratio ranging from 0.2 to 1.2. The developed equation demonstrates substantial agreement with previously reported relationships, indicating high accuracy. These findings provide valuable insights into the lateral strength of infill masonry frames, which can contribute to their improved evaluation and design.

Analysis of Transient Scattering from Arbitrarily Shaped Three-Dimensional Conducting Objects Using Combined Field Integral Equation (결합 적분방정식을 이용한 삼차원 임의형태 도체 구조물의 전자파 지연산란 해석)

  • Jung, Baek-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.11
    • /
    • pp.551-558
    • /
    • 2002
  • A time-domain combined field integral equation (CFIE) is presented to obtain the transient scattering response from arbitrarily shaped three-dimensional conducting bodies. This formulation is based on a linear combination of the time-domain electric field integral equation (EFIE) with the magnetic field integral equation (MFIE). The time derivative of the magnetic vector potential in EFIE is approximated using a central finite difference approximation and the scalar potential is averaged over time. The time-domain CFIE approach produces results that are accurate and stable when solving for transient scattering responses from conducting objects. The incident spectrum of the field may contain frequency components, which correspond to the internal resonance of the structure. For the numerical solution, we consider both the explicit and implicit scheme and use two different kinds of Gaussian pulses, which may contain frequencies corresponding to the internal resonance. Numerical results for the EFIE, MFIE, and CFIE are presented and compared with those obtained from the inverse discrete Fourier transform (IDFT) of the frequency-domain CFIE solution.