• Title/Summary/Keyword: Moment

Search Result 8,360, Processing Time 0.033 seconds

Torsional Resistance of RC Beams Considering Tension Stiffening of Concrete (콘크리트의 인장강성을 고려한 RC보의 공칭비틀림강도)

  • 박창규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.24-32
    • /
    • 2002
  • The modified compression field theory is already applied in shear problem at some code(AASHTO-1998) partly. Nominal shear strength of concrete beam is sum of the concrete shcar strength and the steel shear strength in the current design code. But Torsional moment strength of concrete is neglected in the calculation of the nominal torsional moment strength of concrete beam In the current revised code. Tensile stress of concrete strut between cracks is still in effect due to tension stiffening effect. But The tensile stresses of concrete after cracking are neglected in bending and torsion In design. The torsional behavior is similar to the shear behavior in mechanics. Therefore the torsional moment strength of concrete should be concluded in the nominal torsional moment strength of reinforced concrete beam. This paper shows that the torsional moment strength of concrete is caused by the average principal tensile stress of concrete. To verify the validity of the proposed model, the nominal torsional moment strengths according to two ACI codes (89, 99) and proposed model are compared to experimental torsional moment strengths of 55 test specimens found in literature. The nominal torsional moment strengths by the proposed model show the best results.

A Study on the ALFD Design of Rolled Beams (압연형교의 ALFD설계에 관한 연구)

  • Chung, Kyung-Hee;Kim, Jin-Sung;Yang, Seung-Ie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.91-97
    • /
    • 2003
  • The maximum moment may occur at interior supports of continuous bridges. If the bigger moment is applied on them, a local yielding at interior supports may occur. They may show plastic behaviors, and the moment will be redistributed. The strength design, L.F.D., redistributes 10% of the negative moment which is obtained from the elastic analysis. However, A.L.F.D method computes the moment which is redistributed. This moment is called automoment. The moment-rotation curve is needed to find automoment. In this paper moment-rotation curve for compact sections suggested from AASHTO Guide Specifications is used to find automoment. Based on A.L.F.D. limit states specification method, a three-span continuous bridge is designed.

Cyclic testing of steel column-tree moment connections with various beam splice lengths

  • Lee, Kangmin;Li, Rui;Chen, Liuyi;Oh, Keunyeong;Kim, Kang-Seok
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.221-231
    • /
    • 2014
  • The purpose of this study was to evaluate the cyclic behavior of steel column-tree moment connections used in steel moment resisting frames. These connections are composed of shop-welded stub beam-to-column connection and field bolted beam-to-beam splice. In this study, the effects of beam splice length on the seismic performance of column-tree connections were experimentally investigated. The change of the beam splice location alters the bending moment and shear force at the splice, and this may affect the seismic performance of column-tree connections. Three full-scale test specimens of column-tree connections with the splice lengths of 900 mm, 1,100 mm, and 1,300 mm were fabricated and tested. The splice lengths were roughly 1/6, 1/7, 1/8 of the beam span length of 7,500 mm, respectively. The test results showed that all the specimens successfully developed ductile behavior without brittle fracture until 5% radians story drift angle. The maximum moment resisting capacity of the specimens showed little differences. The specimen with the splice length of 1,300 mm showed better bolt slip resistance than the other specimens due to the smallest bending moment at the beam splice.

Creep of Drift Pin Moment Resisting Joint of LVL under Changing RH (상대습도 변동하의 휨 모멘트가 작용하는 단판적층재 Drift Pin 접합부의 크리프 변형 거동)

  • 홍순일
    • Journal of Korea Foresty Energy
    • /
    • v.18 no.2
    • /
    • pp.84-91
    • /
    • 1999
  • The objective of this study was to present creep and the effects of mechano-sorptive deflection of drift pin moment resisting joint between LVL members under changing relative humidity (RH) conditions. The LVL members with steel gusset were jointed by a square pattern of eight injected drift pin. Three diameter drift pins were used to test specimens (6mm, 10mm, and 16mm). The creep test was conducted under two constant loading conditions : one at 30 kgf(840 kgf-cm) and the other at 60 kgf(1680 kgf-cm). The experiment was conducted in an open shed outside. (1)The total rotation creep model of moment resisting joing can be expressed as the sum of the creep of controlled environment (3-parameter model), dimensional change and mechano-sorptive deflection resulting from the variable environment. (2)Mechanosorptive rotation creep is recoverable as moisture content increases during adsorption. Least squares method for linear regression analysis was performed using mechano-sorptive rotation creep as the dependent variable and moisture content as the independent variable. The slope of low moment specimens are compared with those of high moment. This means that low moment condition is more easily affected by changes in humidity than high moment conditions. (3)Although creep deflection is higher for small diameter drift pin than for large diameter drift pin, the shape of creep deflection curves for all specimens is similar.

  • PDF

Development of a 6-axis Robot's Finger Force/Moment Sensor for Stably Grasping an Unknown Object (미지물체를 안전하게 잡기 위한 6축 로봇손가락 힘/모멘트센서의 개발)

  • 김갑순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.105-113
    • /
    • 2003
  • This paper describes the development of a 6-axis robot's finger force/moment sensor, which measures forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously, for stably grasping an unknown object. In order to safely grasp an unknown object using the robot's gripper, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured forces. Thus, the robot's gripper should be composed of 6-axis robot's finger force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the 6-axis robot's finger force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed. and the result shows that interference errors of the developed sensor are less than 3%. Also, Robot's gripper with the 6-axis robot's finger force/moment sensor for the characteristic test of force control was manufactured, and the characteristic test for grasping an unknown object was performed using it. The fabricated gripper could grasp an unknown object stably. Thus, the developed 6-axis robot's finger force/moment sensor may be used for robot's gripper.

Influence of the axial force on the behavior of endplate moment connections

  • Ghassemieh, Mehdi;Shamim, Iman;Gholampour, Ali Akbar
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.23-40
    • /
    • 2014
  • In this article, using finite element method of analysis (FEM), behavior of the endplate moment connection subjected to axial force and bending moment is investigated. In the FEM model, all the nonlinear characteristics such as material, geometry, as well as contact have been included. First, in order to verify the numerical model of the connection, an analysis of the endplate moment connection conducted without the application of the axial force. Results obtained from FEM indicating a close and good correlation with the experimental results. Then to investigate the influence of the axial forces, the connections subjected to axial forces as well as the bending moment are analyzed. To observe the overall effect of these actions, the momentaxial force interaction diagrams are drawn. It is observed that the presence of axial force even in a small value can change the behavior of the connection significantly. It is also shown that the axial forces can alter the failure mode of the connection; and therefore it could result in a different than the predicted moment capacity of the connection.

A Study on Moment of Truth of Household Telecommunication and Distribution Services in Korea

  • Choi, Hwa-Yeol;Lee, Hyuk-Jin
    • Journal of Distribution Science
    • /
    • v.16 no.6
    • /
    • pp.37-53
    • /
    • 2018
  • Purpose - There have been not enough studies on the ways customer Moment of Truth(MOT) activities are structured along with consumption chain and their influences as well as the relative influences of service quality at Moment of Truth on customer performance. Therefore, customer service needs needed at Moment of Truth may differ depending on whether these distribution services are at introduction-growth stages or maturity-decline stage already, but there is no study which illustrates this. Research design, data, and methodology - This study selects VoIP and IPTV as the household telecommunication and distribution services at introduction-growth stages as well as high speed internet and wire telephone as those at maturity-decline stages. Then it identifies which experiences that customers have at Moment of Truth by each service as well as the influences related to what the customers consider as important. Results - As the result of demonstration with the target of 858 respondents, customers' experiences and requests differ at Moment of Truth. For service quality, what takes the positive roles in customer performance includes corporeality and certainty for the services at introduction-growth stages as well as reliability, sympathy, and mutuality for those at maturity-decline stages. Conclusions - Implications of these results as well as further directions for study are suggested.

On the dynamic instability analysis of mechanical face seals (기계평면시일의 동적 불안정성에 관한 연구)

  • 김청균;서태석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1509-1514
    • /
    • 1990
  • To investigate the seal dynamic instability for a misaligned and coned mechanical face seal, the finite difference approximation was employed to solve the modified Reynolds equation for an incompressible fluid and temperature dependent viscosity. Using the solution, the results for axial force, transverse moment, restoring moment, and ratio of the transverse moment and the restoring moment are calculated for the whole range from zero to full angular misalignment. The results indicate that the transverse moment due to the angular misalignment and coning terms affects considerably the dynamic instability of face seals. It is shown that the simplified treatment of Reynolds equation using the narrow seal approximation overestimate the ratio of the transverse moment to the restoring moment especially at touch.

Development of Calibration System for Multi-Axis Force/Moment Sensor and Its Uncertainty Evaluation (다축 힘/모멘트 센서 교정기의 개발 및 그의 불확도 평가)

  • Kim, Gab-Soon;Yoon, Jung-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.10
    • /
    • pp.91-98
    • /
    • 2007
  • This paper describes the development of the calibration system for a multi-axis force/moment sensor and its uncertainty evaluation. This calibration system can generate the continuous forces (${\pm}Fx,\;{\pm}Fy$ and ${\pm}Fz$) and moments (${\pm}Mx,\;{\pm}My$ and ${\pm}Mz$). Many kinds of multi-axis force/moment sensors in industries should be carried out the characteristic test or the calibration with the calibration system that can generate the forces and the moments. The calibration systems have been already developed are the disadvantages of the low capacity, the generation of step forces(10N, 20N ...) and step moments(1Nm, 2Nm ...) with weights, the high coasts in manufacture and so on. In this paper, the calibration system for a multi-axis force/moment sensor that can generate the continuous three forces and three moments was developed. Their ranges are $0{\sim}2000N$ in all force-directions and $0{\sim}400Nm$ in all moment-directions. And the system was evaluated in the expanded relative uncertainty. They were ${\pm}0.0004$ in all forces ${\pm}Fx,\;{\pm}Fy$ and ${\pm}Fz$, and ${\pm}0.0004$ in all moments ${\pm}Mx,\;{\pm}My$ and ${\pm}Mz$.

Development of 6-axis force/moment sensor for a humonoid robot (인간형 로봇을 위한 6축 힘/모멘트센서 개발)

  • Kim, Gab-Soon;Shin, Hyi-Jun
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.211-219
    • /
    • 2007
  • This paper describes the development of 6-axis force/moment sensor for a humanoid robot. In order to walk on uneven terrain safely, the robot's foot should perceive the applied forces Fx, Fy, Fz and moments Mx, My, Mz to itself, and be controlled by the foot using the forces and moments. Also, in order to grasp unknown object safely, the robot's hand should perceive the weight of the object using the mounted 6-axis force/moment sensor to its wrist, and be controlled by the hand using the forces and moments. Therefore, 6-axis force/moment sensor should be necessary for a humanoid robot's hand and foot. In this paper, 6-axis force/moment sensor for a humanoid robot was developed using many PPBs (parallel plate-beams). The structure of the sensor was newly modeled, and the sensing element of the sensor was designed using theoretical analysis. Then, 6-axis force/moment sensor was fabricated by attaching strain-gages on the sensing elements, and the characteristic test of the developed sensor was carried out. The rated outputs from theoretical analysis agree well with the results from the experiments.