• Title/Summary/Keyword: Molybdenum element

Search Result 28, Processing Time 0.018 seconds

A MICROSTRUCTURAL MODEL OF THE THERMAL CONDUCTIVITY OF DISPERSION TYPE FUELS WITH A FUEL MATRIX INTERACTION LAYER

  • Williams, A.F.;Leitch, B.W.;Wang, N.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.839-846
    • /
    • 2013
  • This paper describes a finite element model of the microstructure of dispersion type nuclear fuels, which can be used to determine the effective thermal conductivity of the fuels during irradiation. The model simulates a representative region of the fuel as a prism shaped unit cell made of brick elements. The elements within the unit cell are assigned material properties of either the fuel or the matrix depending on position, in such a way as to represent randomly distributed fuel particles with a size distribution similar to that of the as manufactured fuel. By applying an appropriate heat flux across the unit cell it is possible to determine the effective thermal conductivity of the unit cell as a function of the volume fraction of the fuel particles. The presence of a fuel/matrix interaction layer is simulated by the addition of a third set of material properties that are assigned to the finite elements that surround each fuel particle. In this way the effective thermal conductivity of the material may also be determined as a function of the volume fraction of the interaction layer. Work is on going to add fission gas bubbles in the fuel as a fourth phase to the model.

The Optimal Resource Development for Analysing Data of Deposit Types' Ore Reserves of Oversea Metal Resource (해외 금속자원에 대한 광상유형별 자료 분석을 통한 효과적인 자원개발)

  • Yoo, Bong-Chul;Lee, Jong-Kil;Lee, Gil-Jae;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.773-795
    • /
    • 2008
  • The major import minerals of South Korea are copper ore, lead-zinc ore, iron ore, manganese ore and molybdenum ore. Oversea resources development of South Korea have 92 projects in 14 nations of Asia, 29 projects in 10 nations of America and Europe, and 14 projects in 9 nations of Middle Asia and Africa. But, most projects of them are found in Australia, China, Mongolia and Indonesia. The most projects of the Australia, China and Indonesia are interested in coal and a little projects of them have manganese, iron, lead-zinc, nickel, copper, gold, molybdenum, rare earth elements and uranium. The most projects of the Mongolia are interested in gold and rare earth elements. Representative ore deposits models of metal resources are Orogenic lode deposits, Volcanogenic massive sulphide deposits, Porphyry deposits, Sedimentary exhalative deposits, Mississippi valley type deposits, Iron oxide copper-gold deposits and Magmatic nickel-copper-platinum group element deposits based on global distribution, reverses and grades of their deposits models. If oversea mineral resources will be examined the mineral reserves, mineral mine production and ore deposits models of nations and then survey and investigate of mineral resources, we may be maintained ore body of high grade at survey area and decrease the investment risk.

Influence of Maternal Diet on Mineral and Trace Element Content of Human Milk and Relationships Between Level of These Milk Constituents (수유부의 식이섭취가 모유의 무기질 및 미량원소 함량에 미치는 영향과 모유의 각 무기질 농도 사이의 상관성 연구)

  • 안홍석
    • Journal of Nutrition and Health
    • /
    • v.26 no.6
    • /
    • pp.772-782
    • /
    • 1993
  • This study was conducted to assess the relationships between maternal dietary intakes and milk contents of minerals and trace elements, and the correlation among levels of these milk constituents. Maternal dietary intakes were measured and milk samples were collected at 2∼5 days, 2, 4, 6 and 12 weeks postpartum from 29 lactating women. The results obtained are sumarized as follows: 1) The overall mean nutrient intakes of lactating women in this study were below the recommended allowances and there were extensive individual variations between subjects. 2) Concentrations of minerals and trace elements in matured human milk showed the same range reported from different countries with the exception of calcium, magnesium, manganese and molybdenum which were relatively high. 3) There were no significant relationships between maternal dietary intakes of minerals and the corresponding mineral levels of human milk. In addition, no significant correlations were found between maternal vitamin C intake and the iron contents of milk. These were significant positive correlations between maternal calcium intake and the magnesium level of milk ; between maternal protein intake and the contents of zinc and copper in human milk. Maternal energy intake was negatively correlated with milk sodium level. 4) Pearson correlation coefficient showed positive significant relationships between levels of 17 pairs of various mineral and trace elements : sodium and potassium, iron ; potassium and calcium, phosphors, magnesium, iron, copper, manganese ; calcium and magnesium, iron manganese, molybdenm, nickel ; magnesium and iron, molybdenum ; iron and copper ; nickel and manganese.

  • PDF

Mineralogical and Geochemical Studies of Uranium Deposits of the Okchon Group in Southwestern District off Taejon, Korea (대전서남지대(大田西南地帶)에 있어서의 옥천대(沃川帶) 우라늄광상(鑛床)에 대(對)한 광물학적(鑛物學的) 및 지화학적(地化學的) 연구(硏究))

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.17 no.4
    • /
    • pp.289-298
    • /
    • 1984
  • Uraniferous black slates of the Okchon sequence occur in Koesan (northeast) through Miwon-Boun (middle) to the southwest off Taejon (southwest) within the Okchon fold belt. The Uraniferous balck slates in the southwest off Taejon are particularly well developed in Chubu (northeast) and Moksso-ri (middle) areas whereas they are less developed in Jinsan (southwest) area. The uraniferous beds range from less than a meter to 40 meters in thickness and range from less than 0.02% $U_3O_8$ (cut-off-grade) to 0.05% $U_3O_8$ in the southwestern district off Taejon. Electron microprobe analysis of uranium-minerals found in graphitic slate samples enables to estimate their major compositions semi-quantitatively so that uraninite, ferro-uranophane and chlopinite are tentatively identified. Uranium-minerals are closely associated with carbon and metal sulfides. Correlation analysis of trace element concentrations revealed that U and F.C., and U and Mo are lineary correlative respectively and their correlation coefficients are positively high whereas those of U and V, U and Mn, and U and Zr are negatively low, implying that uranium mineralization has been closely related with concentrations of carbon and molybdenum. Stable isotope analyses of pyrite sulfur range widely from +11.5% to -23.3% in ${\delta}^{34}S$ values whereas those of graphite carbon fall within a narrow range between -23.3% and -28.9% in ${\delta}^{13}C$ values. The wide range of ${\delta}^{34}S$ values suggests that the sulfur could be of meteoric origin rather than of igneous source. The narrow range of ${\delta}^{13}C$ values, which are close to those of coal, indicates that the graphite is organic carbon in origin. Therefore, it is concluded that the uranium mineralization in the Okchon sequence took place primarily in sedimentary environment rich in organic matter and sulfide ion, both of which served as the reducing agents to convert soluble uranyl complex to insoluble uranium dioxide.

  • PDF

Thermal Transfer Pixel Patterning by Using an Infrared Lamp Source for Organic LED Display (유기 발광 소자 디스플레이를 위한 적외선 램프 소스를 활용한 열 전사 픽셀 패터닝)

  • Bae, Hyeong Woo;Jang, Youngchan;An, Myungchan;Park, Gyeongtae;Lee, Donggu
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.27-32
    • /
    • 2020
  • This study proposes a pixel-patterning method for organic light-emitting diodes (OLEDs) based on thermal transfer. An infrared lamp was introduced as a heat source, and glass type donor element, which absorbs infrared and generates heat and then transfers the organic layer to the substrate, was designed to selectively sublimate the organic material. A 200 nm-thick layer of molybdenum (Mo) was used as the lightto-heat conversion (LTHC) layer, and a 300 nm-thick layer of patterned silicon dioxide (SiO2), featuring a low heat-transfer coefficient, was formed on top of the LTHC layer to selectively block heat transfer. To prevent the thermal oxidation and diffusion of the LTHC material, a 100 nm-thick layer of silicon nitride (SiNx) was coated on the material. The fabricated donor glass exhibited appropriate temperature-increment property until 249 ℃, which is enough to evaporate the organic materials. The alpha-step thickness profiler and X-ray reflection (XRR) analysis revealed that the thickness of the transferred film decreased with increase in film density. In the patterning test, we achieved a 100 ㎛-long line and dot pattern with a high transfer accuracy and a mean deviation of ± 4.49 ㎛. By using the thermal-transfer process, we also fabricated a red phosphorescent device to confirm that the emissive layer was transferred well without the separation of the host and the dopant owing to a difference in their evaporation temperatures. Consequently, its efficiency suffered a minor decline owing to the oxidation of the material caused by the poor vacuum pressure of the process chamber; however, it exhibited an identical color property.

Effects of Alloying Elements on the Mechniacal Properties of 3.6wt%C-2.6wt%Si Ductile Cast Iron Poured into Shell Stack Mold (쉘 스택 주조 3.6wt%C-2.6wt%Si 조성 구상흑연주철의 기계적 성질에 미치는 합금 원소의 영향)

  • Kim, Hyo-Min;Kwon, Hae-Wook;Yeo, In-Dong;Nam, Won-Sick
    • Journal of Korea Foundry Society
    • /
    • v.29 no.3
    • /
    • pp.128-137
    • /
    • 2009
  • The effects of alloying elements on the mechanical properties of 3.6wt%C-2.6wt%C ductile cast iron poured into shell stack molds were investigated. The strength and hardness of the specimens obtained from the center layer in the 5-story stack mold were the lowest and those for other specimens were increased with increased distance from the center. The strength and hardness of the specimens obtained from the center layer were decreased with increased number of layers of the shell stack mold. The strength and hardness of the smaller specimens with the diameter of 9.5 mm were higher than those of 17.5 mm. On the other hand, the elongation of the former was lower than that of the latter. The strength and hardness were increased and the elongation was decreased roughly with the increased amounts of manganese and copper added, respectively. The strength and hardness were increased with the incrcased amount of molybdenum added to 0.40wt% and rather decreased with that to 0.80wt%. Those were greatly increased with the increased amount of tin added and the elongation was roughly decreased with it.

Numerical optimization of transmission bremsstrahlung target for intense pulsed electron beam

  • Yu, Xiao;Shen, Jie;Zhang, Shijian;Zhang, Jie;Zhang, Nan;Egorov, Ivan Sergeevich;Yan, Sha;Tan, Chang;Remnev, Gennady Efimovich;Le, Xiaoyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.666-673
    • /
    • 2022
  • The optimization of a transmission type bremsstrahlung conversion target was carried out with Monte Carlo code FLUKA for intense pulsed electron beams with electron energy of several hundred keV for maximum photon fluence. The photon emission intensity from electrons with energy ranging from 300 keV to 1 MeV on tungsten, tantalum and molybdenum targets was calculated with varied target thicknesses. The research revealed that higher target material element number and electron energy leads to increased photon fluence. For a certain target material, the target thickness with maximum photon emission fluence exhibits a linear relationship with the electron energy. With certain electron energy and target material, the thickness of the target plays a dominant role in increasing the transmission photon intensity, with small target thickness the photon flux is largely restricted by low energy loss of electrons for photon generation while thick targets may impose extra absorption for the generated photons. The spatial distribution of bremsstrahlung photon density was analyzed and the optimal target thicknesses for maximum bremsstrahlung photon fluence were derived versus electron energy on three target materials for a quick determination of optimal target design.

Dietary intakes of Fe, Zn, Cu, Mn, Se, Mo, and Cr of Korean adult women - Comparison between the data from analyzed and calculated - (성인 여성의 미량무기질(Fe, Zn, Cu, Mn, Se, Mo 및 Cr) 섭취량 - 분석치와 계산치의 비교 -)

  • Kim, Kyung-Hee;Lim, Hyeon-Sook
    • Korean Journal of Human Ecology
    • /
    • v.9 no.3
    • /
    • pp.69-79
    • /
    • 2006
  • The previous studies on the intake of trace elements performed in Korea were only concerned about major elements like Fe, Zn or Cu. There is little data about the intake of minor elements like Mn, Se, Mo or Cr. And most of the data were obtained by calculation using Food Composition Tables or by analysis using atomic absorption spectrophotometers (AAS). The purpose of this study, therefore, was to evaluate the dietary intake of seven trace elements, Fe, Zn, Cu, Mn, Se, Mo, and Cr of Korean adult wonmen and to compare the data between analyzed using ICP-MS (or ICP-AES) and calculated by the CAN-Pro (or Food Composition Table). A total of nineteen adult women participated voluntarily in this study and collected one-tenth of the foods that they consumed for three consecutive days. Analyzed intake of Fe of the subjects was $6.94{\pm}2.18$ (calculated, $18.87{\pm}4.50$) mg/day, that of Ze was $9.35{\pm}4.95$ (calculated, $8.35{\pm}2.87mg/day$), that of Cu was $1.18{\pm}0.26\;(1.11{\pm}0.32mg/day)$, that of Mn was $3.69{\pm}0.69\;(2.83{\pm}1.68mg/day)$, that of Se was $41.93{\pm}9.28$ (calculated, $27.58{\pm}6.97{\mu}g/day$), that of Mo was $134.0{\pm}49.1{\mu}g/day$, and that of Cr was $136.5{\pm}147.9{\mu}g/day$. The analyzed Fe intake of the subjects did not meet Estimated Average Requirement (EAR) nor Recommended Intakes (RI) for Korean women aged 20-29 years old. However, the analyzed intakes of the other six elements, Zn, Cu, Mn, Se, Mo, and Cr, seemed to meet each of the respective RIs. The analyzed Fe intake was significantly lower than the calculated one, in fact by 2.72 times, however, the analyzed intakes of the other elements, Mn and Se, were significantly higher and those of Zn and Cu were similar than each of the calculated ones. The difference of the data between analyzed and calculated intakes indicates that it is necessary to set up database on trace element contents of foods of the Food Composition Table and the CAN-Pro so as to have accuracy.

  • PDF