• Title/Summary/Keyword: Molybdenum Thin Film

Search Result 49, Processing Time 0.038 seconds

Experimental study on CIS thin film deposition via electrostatic spray technique (정전기 스프레이 기술을 이용한 CIS 박막코팅에 관한 실험적 연구)

  • Yoon, Hyun;Yoon, Sukgoo;Kim, Hoyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.37.2-37.2
    • /
    • 2010
  • Electrostatic spray deposition is an innovative coating technique that produces fine, uniform, self-dispersive (due to the Coulombic repulsion), and highly wettable, atomized drops. Copper-indium salts are dissolved in an alcohol-based solvent, which is then electrostatically sprayed onto a moderately heated, molybdenum-coated substrate. Solvent flowrates range from 0.02 to 5 ml/hr under applied voltages of 1 to 20 kV yielding drop sizes around a few hundred nanometers. By comparing the scanning electron miscrscope images of coated samples, the substrate temperature, applied voltage, solvent flowrate, and nozzle-substrate distance are demonstrated to be the primary parameters controlling coating quality. Also, the most stable electrostatic spray mode that reliably produces uniform and fine drops is the cone-jet mode with a Taylor cone issuing from the nozzle.

  • PDF

The development of high brightness IPS mode for LCD Monitors

  • Kang, In-Byeong;Youn, Won-Gyun;Cho, So-Haeng;Song, In-Duk;Ahn, In-Ho;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.11-12
    • /
    • 2000
  • An 18.1" Thin Film Transistor Liquid Crystal Display (TFT LCD) monitor adopting high brightness In Plane Switching (IPS) technology was realized. While conventional IPS structure used a Chromium (Cr) and Molybdenum (Mo) for a drain electrode, Indium Tin Oxide (ITO) was proposed and verified in this paper. Black sticky micropeal spacers were introduced for the reduction of light scattering phenomena, which was observed at dark room with the conventional micropeal spacers. With the proposed method, more than 10 % aperture ratio was increased and the excellent image quality was obtained.

  • PDF

Diffusion barrier properties of Mo compound thin films (Mo-화합물의 확산방지막으로서의 성질에 관한 연구)

  • 김지형;이용혁;권용성;염근영;송종한
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.2
    • /
    • pp.143-150
    • /
    • 1997
  • In this study, doffusion barrier properties of 1000 $\AA$ thick molybdenum compound(Mo, Mo-N, $MoSi_2$, Mo-Si-N) films were investigated using sheet resistance measurement, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), Scanning electron mircoscopy(SEM), and Rutherford back-scattering spectrometry(RBS). Each barrier material was deposited by the dc magnetron sputtering and annealed at 300-$800^{\circ}C$ for 30 min in vacuum. Mo and MoSi2 barrier were faied at low temperatures due to Cu diffusion through grain boundaries and defects in Mo thin film and the reaction of Cu with Si within $MoSi_2$, respectively. A failure temperature could be raised to $650^{\circ}C$-30 min in the Mo barrier system and to $700^{\circ}C$-30 min in the Mo-silicide system by replacing Mo and $MoSi_2$ with Mo-N and Mo-Si-N, respectively. The crystallization temperature in the Mo-silicide film was raised by the addition of $N_2$. It is considered that not only the $N_2$, stuffing effect but also the variation of crystallization temperature affects the reaction of Cu with Si within Mo-silicide. It is found that Mo-Si-N is the more effective barrier than Mo, $MoSi_2$, or Mo-N to copper penetraion preventing Cu reaction with the substrate for $30^{\circ}C$min at a temperature higher than $650^{\circ}C$.

  • PDF

Optimization of ZnO:Al properties for $CuInSe_2$ superstrate thin film solar cell

  • Lee, Eun-U;Park, Sun-Yong;Lee, Sang-Hwan;Kim, U-Nam;Jeong, U-Jin;Jeon, Chan-Uk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.36.1-36.1
    • /
    • 2010
  • While the substrate-type solar cells with Cu(In,Ga)Se2 absorbers yield conversion efficiencies of up 20%[1], the highest published efficiency of Cu(In,Ga)Se2 superstrate solar cell is only 12.8% [2]. The commerciallized Cu(In,Ga)Se2 solar cells are made in the substrate configuration having the stacking sequence of substrate (soda lime glass)/back contact (molybdenum)/absorber layer (Cu(In,Ga)Se2)/buffer layer (cadmium sulfide)/window layer (transparent conductive oxide)/anti reflection layer (MgF2) /grid contact. Thus, it is not possible to illuminate the substrate-type cell through the glass substrate. Rather, it is necessary to illuminate from the opposite side which requires an elaborate transparent encapsulation. In contrast to that, the configuration of superstrate solar cell allows the illumination through the glass substrate. This saves the expensive transparent encapsulation. Usually, the high quality Cu(In,Ga)Se2 absorber requires a high deposition temperature over 550C. Therefore, the front contact should be thermally stable in the temperature range to realize a successful superstrate-type solar cell. In this study, it was tried to make a decent superstrate-type solar cell with the thermally stable ZnO:Al layer obtained by adjusting its deposition parameters in magnetron sputtering process. The effect of deposition condition of the layer on the cell performance will be discussed together with hall measurement results and current-voltage characteristics of the cells.

  • PDF

Heterojunction Solar Cell with Carrier Selective Contact Using MoOx Deposited by Atomic Layer Deposition (원자층 증착법으로 증착된 MoOx를 적용한 전하 선택 접합의 이종 접합 태양전지)

  • Jeong, Min Ji;Jo, Young Joon;Lee, Sun Hwa;Lee, Joon Shin;Im, Kyung Jin;Seo, Jeong Ho;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.322-327
    • /
    • 2019
  • Hole carrier selective MoOx film is obtained by atomic layer deposition(ALD) using molybdenum hexacarbonyl[$Mo(CO)_6$] as precursor and ozone($O_3$) oxidant. The growth rate is about 0.036 nm/cycle at 200 g/Nm of ozone concentration and the thickness of interfacial oxide is about 2 nm. The measured band gap and work function of the MoOx film grown by ALD are 3.25 eV and 8 eV, respectively. X-ray photoelectron spectroscopy(XPS) result shows that the $Mo^{6+}$ state is dominant in the MoOx thin film. In the case of ALD-MoOx grown on Si wafer, the ozone concentration does not affect the passivation performance in the as-deposited state. But, the implied open-circuit voltage increases from $576^{\circ}C$ to $620^{\circ}C$ at 250 g/Nm after post-deposition annealing at $350^{\circ}C$ in a forming gas ambient. Instead of using a p-type amorphous silicon layer, high work function MoOx films as hole selective contact are applied for heterojunction silicon solar cells and the best efficiency yet recorded (21 %) is obtained.

Photovoltaic Properties of Cu(InGa)$Se_2$ Solar Cells with Sputter Conditions of Mo films (Mo 박막의 성장조건에 따른 Cu(InGa)$Se_2$ 박막 태양전지의 광변환효율)

  • Kim, S.K.;Lee, J.C.;Kang, K.H.;Yoon, K.H.;Park, I.J.;Song, J.;Han, S.O.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.63-66
    • /
    • 2002
  • Bi-layer Mo films were deposited on sodalime glass substrates using DC magnetron sputtering. As the gas pressure and power density, the resistivity varied from $1.5{\times}10^{-5}$ to $4.97{\times}10^{-4}{\Omega}{\cdot}cm$. Furthermore, stress direction yielded compressive-to-tensile transition stress curves. The microstructure of the compressive stress films which had poor adhesion consists of tightly packed columns, but of the tensile-stressed films had less dense structure. Under all gas pressure conditions, Mo films exhibited distinctly increasing optical reflection with decreasing gas pressure. The expansion of (110) peak width with the gas pressure meant the worse crystalline growth. Also, The highest efficiency was 15.2% on 0.2 $cm^2$. The fill factor, open circuit voltage and short circuit current were 63 %, 570 m V and 42.6 $mA/cm^2$ respectively.

  • PDF

MO-COMPOUNDS AS A DIFFUSION BARRIER BETWEEN Cu AND Si

  • Kim, Ji-Hyung;Lee, Yong-Hyuk;Kwon, Yong-Sung;Yeom, Geun-Young;Song, Jong-Han
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.683-690
    • /
    • 1996
  • In this study, the diffusion barrier properties of $1000 \AA$ thick molybdenum compounds (Mo, Mo-N, $MoSi_2$, Mo-Si-N) were investigated using sheet resistance measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM), and Rutherford backscattering spectrometry (RBS). Each barrier material was deposited by the dc magnetron sputtering, and annealed at 300-$800^{\circ}C$ for 30min in vacuum. Mo and $MoSi_2$ barrier were failed at low temperature due to Cu diffusion through grain bound-aries and defects of Mo thin film and the reaction of Cu with Si within $MoSi_2$ respectively. A failure temperature could be raised to $650^{\circ}C$-30min in the Mo barrier system and to $700^{\circ}C$-30min in the Mo-silicide system by replacing Mo and $MoSi_2$ with Mo-N and Mo-Si-N, respectively. The crystallization temperature in the Mo-silicide film was raised by the addition of $N_2$. It is considered that not only the N, stuffing effect but also the variation of crystallization temperature affects the reaction of Cu with Si within Mo-silicide. It was found that Mo-Si-N is more effective barrier than Mo, $MoSi_2$, or Mo-N to copper penetration preventing Cu reaction with the substrate for 30min at a temperature higher than $650^{\circ}C$.

  • PDF

Transition Metal Oxide Multi-Layer Color Glass for Building Integrated Photovoltaic System (BIPV 시스템을 위한 전이금속 산화물 다중층 컬러 유리 구현 기술 연구)

  • Ahn, Hyeon-Sik;Gasonoo, Akpeko;Jang, Eun-Jeong;Kim, Min-Hoi;Lee, Jae-Hyun;Choi, Yoonseuk
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1128-1133
    • /
    • 2019
  • This paper proposed colored front panel glass for Building Integrated Photovoltaic (BIPV) systems using multi-layered thin films composed of transition metal oxide (TMO) layers. Molybdenum oxide (MoO3) and tungsten oxide (WO3) provided complementary and suitable materials in making effective interference of reflected light from interfaces with significant difference in refractive indices. A simple, fast, and cheap fabrication method was achieved by depositing the multi-layer films in a single thermal evaporator. Magenta colored glass with optical transmittance of more than 90% was achieved with MoO3 (60nm)/WO3(100nm) multi-layered film. This technology could play in a critical role in commercial BIPV system applications.

Influence of Fluorine Doping on Hardness and Compressive Stress of the Diamond-Like Carbon Thin Film

  • Sayed Mohammad Adel Aghili;Raheleh Memarzadeh;Reza Bazargan Lari;Akbar Eshaghi
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.124-129
    • /
    • 2023
  • This study assessed the influences of fluorine introduced into DLC films on the structural and mechanical properties of the sample. In addition, the effects of the fluorine incorporation on the compressive stress in DLC films were investigated. For this purpose, fluorinated diamond-like carbon (F-DLC) films were deposited on cobalt-chromium-molybdenum substrates using radio-frequency plasma-enhanced chemical vapor. The coatings were examined by Raman scattering (RS), Attenuated total reflectance Fourier transform infrared spectroscopic analysis (ATR-FTIR), and a combination of elastic recoil detection analysis and Rutherford backscattering (ERDA-RBS). Nano-indentation tests were performed to measure hardness. Also, the residual stress of the films was calculated by the Stony equation. The ATR-FTIR analysis revealed that F was present in the amorphous matrix mainly as C-F and C-F2 groups. Based on Raman spectroscopy results, it was determined that F made the DLC films more graphitic. Additionally, it was shown that adding F into the DLC coating resulted in weaker mechanical properties and the F-DLC coating exhibited lower stress than DLC films. These effects were attributed to the replacement of strong C = C by feebler C-F bonds in the F-DLC films. F-doping decreased the hardness of the DLC from 11.5 to 8.8 GPa. In addition, with F addition, the compressive stress of the DLC sample decreased from 1 to 0.7 GPa.