• Title/Summary/Keyword: Molten Salt Synthesis Method

Search Result 37, Processing Time 0.025 seconds

Piezoelectric and Electrostriction Properties of Electrostriction Ceramic Prepared by Double Calcination (이단하소법에 의해 제조된 전왜세라믹의 압전 및 전왜특성)

  • Lee, S.H.;Yoo, K.M.;Cho, H.C.;Kim, H.G.;SaGong, G.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1326-1329
    • /
    • 1997
  • In this paper, PNN-PZN-PZT ceramics were fabricated with various mole ratio of the PZT[$Pb(Zr_{1/2}Tid_{1/2})O_3$]. PNN [$Pb(Ni_{1/3}Nb_{2/3})O_3$] and PZN[$Pb(Ni_{1/3}Nb_{2/3})O_3$ powders prepared by double calcination and PZT powders prepared by molten-salt synthesis method. The formation rate of perovskite phase in PNN-PZN-PZT ceramics could be obtained about 92% at PZT 0.3 mole ratio. The relative permittivity of specimen with PZT 0.3 mole ratio was shown 5,320 and appeared the relaxor ferroelectric feature. The maximum piezoelectric coefficient $d_{31}$ to be used for evaluation the displacement of piezoceramics in PNN-PZN-PZT ceramics was $324{\times}10^{-12}$(C/V) at the vicinity of morphotropic phase boundary and was larger than that of solid PZT ceramics($120{\times}10^{-12}C/V$).

  • PDF

Electrical Properties of Langmuir-Blodgett(LB) Organic Ultrathin Films (Langmuir-Blodgett(LB) 유기 초박막의 전기적 특성에 관한 연구)

  • Lee, Ho-Sik;Lee, Seung-Yop;Lee, Won-Jae;Kim, Tae-Wan;Kang, Dou-Yol
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1330-1332
    • /
    • 1997
  • In this paper, PNN-PZN-PZT ceramics were fabricated with various mole ratio of the PZT[$Pb(Zr_{1/2}Tid_{1/2})O_3$]. PNN [$Pb(Ni_{1/3}Nb_{2/3})O_3$] and PZN[$Pb(Ni_{1/3}Nb_{2/3})O_3$ powders prepared by double calcination and PZT powders prepared by molten-salt synthesis method. The formation rate of perovskite phase in PNN-PZN-PZT ceramics could be obtained about 92% at PZT 0.3 mole ratio. The relative permittivity of specimen with PZT 0.3 mole ratio was shown 5,320 and appeared the relaxor ferroelectric feature. The maximum piezoelectric coefficient $d_{31}$ to be used for evaluation the displacement of piezoceramics in PNN-PZN-PZT ceramics was $324{\times}10^{-12}$(C/V) at the vicinity of morphotropic phase boundary and was larger than that of solid PZT ceramics($120{\times}10^{-12}C/V$).

  • PDF

The Synthesis of Na0.6Li0.6[Mn0.72Ni0.18Co0.10]O2 and its Electrochemical Performance as Cathode Materials for Li ion Batteries

  • Choi, Mansoo;Jo, In-Ho;Lee, Sang-Hun;Jung, Yang-Il;Moon, Jei-Kwon;Choi, Wang-Kyu
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.245-250
    • /
    • 2016
  • The layered $Na_{0.6}Li_{0.6}[Mn_{0.72}Ni_{0.18}Co_{0.10}]O_2$ composite with well crystalized and high specific capacity is prepared by molten-salt method and using the substitution of Na for Li-ion battery. The effects of annealing temperature, time, Na contents, and electrochemical performance are investigated. In XRD analysis, the substitution of Na-ion resulted in the P2-$Na_{2/3}MO_2$ structure ($Na_{0.70}MO_{2.05}$), which co-exists in the $Na_{0.6}Li_{0.6}[Mn_{0.72}Ni_{0.18}Co_{0.10}]O_2$ composites. The discharge capacities of cathode materials exhibited $284mAhg^{-1}$ with higher initial coulombic efficiency.

The Effect of Piezoelectric Ceramic for Properties Improvement at Electrostriction Ceramic (Actuator용 전왜재료의 특성개선을 위한 압전재료의 첨가효과)

  • 이수호;조현철;김한근;손무현;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.206-210
    • /
    • 1997
  • In the fields of the optics, precise machine, semiconductors, the micro-positioning actuators are required for the control of position in the submicron range. PNN-P2N-PZT ceramics were fabricated with various mole ratio of the PZT[Pb(Zr$_{1}$2//Ti$_{1}$2)O$_3$]. PNN (Pb(Ni$_{1}$3/Nb$_{2}$3/)O$_3$]and PZN[Pb(Zn$_{1}$3//Nb/sbu 2/3/)O$_3$] powders prepared by double calcination and PZT powders prepared by molten- salt synthesis method. The relative permittivity of specimen with PZT 0.3 mole ratio was shown 5,320 and appeared the relaxor ferroelectric feature. The maximum Piezoelectric coefficient d$_{31}$ to be used for evaluation the displacement of piezoceramics in PNN-PZN-PZT ceramics was 324$\times$10$^{-12}$ (C/V) at the vicinity of morphotropic phase boundary and was larger than that of solid PZT ceramics(120$\times$10$^{-12}$ C/V).

  • PDF

Effect of Na2CO3 contents on synthesis of plate-like NaNbO3 particles for templated grain growth

  • Kim, Min-Soo;Lee, Sung-Chan;Kim, Sin-Woong;Jeong, Soon-Jong;Kim, In-Sung;Song, Jae-Sung;Soh, Jin-Joong;Byun, Woo-Bong
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.270-273
    • /
    • 2012
  • x mol% (x = 0 ~ 20) Na2CO3 excess Bi2.5Na3.5Nb5O18 (BNN) particles were synthesized using molten salt as a flux. The secondary phases were observed at stoichiometric ratio of BNN precursors and their intensity decreased with increasing Na contents. The results of SEM images showed that all particles existed in a platelet shape and the particle increased in size with higher increasing Na contents. Plate-like NaNbO3 particles were developed using BNN precursor obtained by a topochemical microcrystal conversion. XRD analysis of NaNbO3 particles showed that a single perovskite phase and the intensity of (h00) peaks increased with increasing Na contents in BNN precursor. SEM images showed that the size of plate-like NaNbO3 was significantly changed by controlling Na contents in BNN precursors.

Fabrication and Electrical Properties of High Tc $A_{2}B_{2}O_{7}$ Piezoelectric Ceramics Using the Powders Prepared by the Chemical Coprecipitation Method (화학적공침법에 의한 $A_{2}B_{2}O_{7}$ 고온압전세라믹스의 제작과 전기적 특성)

  • Son, Chang-Heon;Jeon, Sang-Jae;Nam, Hyo-Duk
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.316-327
    • /
    • 1997
  • Polycrystalline $Sr_{2}Nb_{2}O_{7}$ and $La_{2}Ti_{2}O_{7}$ ceramics with very high Curie temperatures were synthesized by the chemical coprecipitation method (CCP). The powders synthesized were identified by XRD and their sintering behavior and physical properties were studied. The grain-orientation and electrical properties of sintered ceramics were investigated as a function of firing temperature. Single phase could be obtained by CCP method at temperature lower than that of the conventional method by 100 - $150^{\circ}C$. Strontium niobate, $Sr_{2}Nb_{2}O_{7}$, powder was Prepared by CCP method at temperatures as low as $800^{\circ}C$ via intermediate phase of $Sr_{5}Nb_{4}O_{15}$ formed at $700^{\circ}C$. The resulting CCP-derived powder was observed to have finer and more uniform particle size distribution than those obtained through the conventional or the molten salt synthesis method. Sintering of CCP-derived $Sr_{2}Nb_{2}O_{7}$ powder at $1500^{\circ}C$ yielded a highly dense ceramics with 97% theoretical density. Very high grain-orientation developed along the (0k0) direction was observed by SEM, which resulted in anisotropic dielectric properties of the sintered samples, with the dielectric constant values approaching those for single crystal.

  • PDF

Synthesis and Characterization of Low-Dimensional Chalcogenide Compound via a Molten Salt Method (용융염법을 이용한 저차원 구조의 금속 칼코겐 화합물의 합성 및 구조 특성연구)

  • Choi, Duc-Su;Yun, Hye-Sik;Oh, Hwa-Suk;Kim, Don;Yun, Ho-Seop;Park, Youn-Bong
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.5
    • /
    • pp.504-509
    • /
    • 2004
  • The reaction of Cu metal with mixed alkali metal polyselenide flux ($KNaSe_x$) produced large plate-like crystals of $KCu_4Se_3$. The structure of $KCu_4Se_3$, determined with X-ray single crystal diffraction techniques, is tetragonal (P4/mmm, a=4.013(1))${\AA}$, c=9.712(1))${\AA}$, z=1, R=6.7%). The structure is composed $[Cu_4Se_3]_n^{n-}$double layers which are made of fused anti PbO-type Cu2Se2 layers. Temperature variable resistivity measurement on single crystal of $KCu_4Se_3$ shows metallic behavior ranging from $1.8{\times}10^{-4}{\Omega}{\cdot}cm$ (at 300 K) to $1.0{\times}10^{-6}{\Omega}{\cdot}cm$ (at 20 K).