• Title/Summary/Keyword: Molten Metal

Search Result 454, Processing Time 0.033 seconds

Natural Convection Heat Transfer Characteristics of the Molten Metal Pool with Solidification by Boiling Coolant

  • Cho, Jae-Seon;Suh, Kune-Yull;Chung, Chang-Hyun;Park, Rae-Joon;Kim, Sang-Baik
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.719-725
    • /
    • 1997
  • This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. As a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232$^{\circ}C$. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation beかeon the Nusselt number and the Rayleigh number in the molten metal Pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer.

  • PDF

An Experimental and Numerical Analysis of Flow of Electromagnetic Pump for Molted Metal Transport (용융금속 이송용 전자기 펌프의 유동해석 및 실험)

  • Choi, Jae-Ho;Lim, Hyo-Jae;Kim, Chang-Eob;Kwon, Jung-Tae
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2621-2625
    • /
    • 2007
  • This study aims at analyzing the flow characteristics of the electromagnetic pump using a linear induction motor (LIM) for transferring molten metals. The flow characteristics of the pump are simulated by magnetohydrodynamic(MHD) program. In this system, the LIM is used for transferring molten metal by electromagnetic force. The molten metal is treated as the secondary part of the LIM. Since the LIM produces an electromagnetic force in the duct, the molten metal can flow from the furnace to the reservoir. The flow characteristics of the pump are analyzed using MHD program for magnetic field of 0.1[T] in duct. In order to prove the analysis, we made a prototype electromagnetic pump using LIM.

  • PDF

A Study on the Design of a Rotational Force Generator for Molten Metal (용탕 회전력 생성장치의 설계에 관한 연구)

  • Lee, Jun-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.493-501
    • /
    • 2012
  • A rotational force generator for molten metal is developed using a linear motor design technology. Also, the developed device is applied to reproduce aluminum scraps and easy to control the rotate, stop, and forward and reverse rotation of molten metal. In addition, the developed device improves the melting speed and reproduction rate about 250 (%) and 96-99 (%), respectively, compared to the conventional handmade methods. Because it generates almost no dusts, it can improve working environments in a factory. Also, it has no losses in energy because it directly melts scraps. The device generates small amounts of the loss in refractory materials and aluminum caused by its oxidation because the molten metal is continuously rotated in which the loss and oxidized aluminum are the problems in the conventional melting and holding furnaces. Thus, it is possible to extend the life of furnaces and to produce high quality aluminum products.

An Implementation of an Integrated Degasing System for Aluminum Molten Metal in Continuous Casting (알루미늄 연속주조 용탕의 탈 가스 일체화 장치 개발)

  • Lee, Yong-Joong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • There are some methods that have been used to manage a degasing process in recent years, such as an injection method that uses aluminum molten metal powder and chemicals supplier and input method that supplies argon and nitrogen, or chlorine gas by using a gas blow-tube. However, these methods show some problems, and it shows that it is a difficult process to handle, pollution due to producing a lot of toxic gases like chlorine and fluoride gas, irregular effects, and lowering work efficiency due to the excessive processing time. The problems that are the most fatal are the producing a lot of sludge due to the reaction of aluminum molten metal with chemicals, loss of metals, and decreasing the life of refractory materials. In order to solve these problems, this paper develops a technology that is related to aluminum continuous casting molten metal and monolithic degasing apparatus. A degasing apparatus developed in this study improved the existing methods and prevented environmental pollution with smokeless, odorless, and harmlessness by using a new method that applies argon and nitrogen gas in which the methods used in the West and Japan are eliminated. The method developed in this study decreases the molten metal processing and settling time compared to the existing methods and improves the workers' health, safety, and environment because there is no pollution in processes.

Mold Cavity Filling by Gating Design in Vacuum Molding Process (진공흡입주형 주조법에서 탕구방안에 따른 주형 충전 양상)

  • Kang, Bok-Hyun;Kim, Ki-Young;Kim, Myung-Han;Hong, Young-Myung
    • Journal of Korea Foundry Society
    • /
    • v.27 no.1
    • /
    • pp.42-47
    • /
    • 2007
  • Vacuum molding process(V-process) has several benefits such as a lower total production cost and a high quality casting comparing to the conventional sand molding. Influence of the gating design on the molten metal flow was investigated in this study. General criteria for the gating design of the castings and commercial codes for the flow and solidification analysis were used to attain the optimized gating design in V-process. Though mold cavity was filled smoothly under the low initial velocity of molten metal, molten metal dashed against the upper part of the mold before the completion of the mold filling with higher initial molten metal velocity and fell soon. This phenomenon may affect collapsing the mold shape, however it is thought that the possibility of burning out of the vinyl by the molten metal is not so high because vinyl is coated with refractory material.

Development of a monolithic apparatus for degasing aluminum continuous casting molten metal (알루미늄 연속주조 용탕의 탈 가스 일체화 장치 개발)

  • 이용중;김태원;김기대;류재엽;이형우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.145-149
    • /
    • 2004
  • It is necessary for managing a perfect process for degasing aluminum molten metal according to the increase of a grade of aluminum and its alloy products. There are some methods that have been used to manage a degasing process in recent years, such as an injection method that uses aluminum molten metal powder and chemicals supplier and input method that supplies argon and nitrogen, or chlorine gas by using a gas blow-tube. However, these methods show some problems, and it shows that it is a difficult process to handle. pollution due to the producing a lot of toxic gases like chlorine and fluoride gas. irregular effects, and lowering work efficiency due to the excessive processing time. The problems that are the most fatal are the producing a lot of sludge due to the reaction of aluminum molten metal with chemicals. loss of metals, and decreasing the life of refractory materials. In order to solve these problems. this paper develops a technology that is related to aluminum continuous casting molten metal and monolithic degasing apparatus. A degasing apparatus developed in this study improved the exist ing methods and prevented environmental pollution wi th smokeless. odor less, and harmlessness by using a new method that applies argon and nitrogen gas in which the methods used in the West and Japan are eliminated. The developed method can significantly reduce product faults that are caused by the production of gas and oxidation because it uses a preprocessed molten metal with chemicals. In addition. the amount of the produced sludge can also be reduced by 60-80% maximum compared with the existing methods. Then. it makes it possible to minimize the loss of metals. Moreover. the molten metal processing and settling time is also shortened by comparing it with the existing methods that are applied by using chemicals. In addition, it does much to improve the workers' health, safety and environment because there is no pollution. The improvement of productivity and prevent ion effects of disaster from the results of the development can be summarized as follows. It will contribute to the process rationalization because it does not have any unnecessary processes that the molten metal will be moved to an agitator by using a ladle and returned to process for degasing like the existing process due to the monolithic configuration. There are no floating impurities due to the oxidation caused by the contact with the air as same as the existing process. In addition. it can protect the blending of precipitation impurities. Because it has a monolithic configuration. it can avoid the use of additional energy to compensate the temperature decreasing about 60t that is caused by the moving of molten metal. It is not necessary to invest an extra facilities in order to discharge the gas generated from a degasing process by using an agitator. The working environment can be improved by the hospitable air in the factory because the molten metal is almost not exposed in the interior of the area.

  • PDF

A study on Characteristics of Molten Metal Flow in Vacuum DieCasting by Numerical Analysis (수치해석에 의한 진공다이캐스팅에서의 용탕 유동특성 연구)

  • Park, Jin-Young;Lim, Kwan-Woo;Lee, Kwang-Hak;Kim, Sung-Bin;Kim, Eok-Soo;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.27 no.4
    • /
    • pp.153-158
    • /
    • 2007
  • Molten metal flow in vacuum die casting was characterized by a numerical analysis. The VOF method was used to simulate the filling behaviors of molten metal during filling process. The various vacuum degrees of no vacuum(760 mmHg), 650, 500, 250 and 60mmHg were artificially applied in cavity. And the filling behaviors of molten metal with the applied vacuum conditions were simulated and compared with those of experiment. The results showed that molten metal was partially filled into cavity when vacuum was applied and the filling length of molten metal in cavity was increased with increasing applied reduced pressure in cavity. Also, the simulated filling behaviors of molten metal were apparently similar to those of experiment, indicating the numerical analysis developed in this study was highly effective. Through the result of fluid flow simulation, both relation equations of filling length and filling velocity with the variation of pressure conditions in cavity were calculated respectively and the internal gas contents of casting was significantly reduced by the modification of vacuum gate system.

Modeling of Metal Transfer in GMA Welding Process (용융부의 형상을 고려한 GMA 용접 공정의 금속이행 모델링)

  • 이강희;최상균;유중돈
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 1995
  • As the metal transfer in the GMAW process affects the weld quality and productivity, the mechanism of molten formation and detachment has been investigated at various welding conditions. The force balance and pinch instability models have been widely used to analyze the metal transfer in the globular and spray modes, respectively A new approach is proposed in this work by minimizing the energy of molten drop system. Effects of the surface tension, gravity, electromagnetic and drag forces are considered with no presumed molten drop geometry. Effects of various welding conditions on the metal transfer are explained. The results show that the proposed mode can be applied to the globular and spray transfer modes. When compared with other models, results of the proposed model show better agreements with the available experimental data, which demonstrates the validity of the present model.

  • PDF

Coolant Material Effect on the Heat Transfer Rates of the Molten Metal Pool with Solidification

  • Cho, Jae-Seon;Kune Y. Suh;Chung, Chang-Hyun;Park, Rae-Joon;Kim, Snag-Baik
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.812-817
    • /
    • 1998
  • Experimental studies on heat transfer and solidification of the molten metal pool with overlying coolant with boiling were performed The simulant molten pool material is tin (Sn) with the melting temperature of 232$^{\circ}C$. Demineralized water and R113 are used as the working coolant. This work examines the crust formation and the heat transfer characteristics of the molten metal pool immersed in the boiling coolant. The Nusselt number and the Rayleigh number in the molten metal Pool region of this study are compared between the water coolant case and the R113 coolant case. The experimental results or the water coolant are higher than those for R113. Also, the empirical relationship of the Nusselt number and the Rayleigh number is compared with the literature correlations measure from mercury. The present experimental results are higher than the literature correlations. It is believed that this discrepancy is caused by the effect of heat loss to the environment on the natural convection heat transfer in the molten pool.

  • PDF

Design and Evaluation of High Insulation Ladle for Carrying Aluminum Molten Metal (알루미늄 용탕 운반용 고보온성 Ladle 설계 및 평가)

  • Park, Jin-Young;Choi, Suk-Hwan;Yun, Phil-Hwan;Kim, Eok-Soo
    • Journal of Korea Foundry Society
    • /
    • v.30 no.3
    • /
    • pp.115-120
    • /
    • 2010
  • Recently, an advanced raw material supplying system in diecasting industry that molten metal produced by the raw material supplier can be directly delivered to the diecasting shops was proposed. It was known to have advantages of reducing melting process cost and improving working environment. However, for its successful mass production, the development of high insulation ladle is inevitable. In this study, the optimal mixing ratio of $SiO_2-Al_2O_3$ was investigated and the high insulation ladle with computer simulation result was built in a prototype and evaluated. The prototype which has refractory wall of $SiO_233%-Al_2O_3$ 35%-CaO 33% showed high insulation sufficient for carrying the Al molten metal for 138 minutes. Gas quantity result and SEM-EDS analysis on the melt poured in the ladle also showed extremely low level of 0.028 cc / 100 g and no penetration of Al molten metal into the refractory wall, satisfying the requirements for mass production.