• 제목/요약/키워드: Molten Drop Geometry

검색결과 4건 처리시간 0.02초

용융부의 형상을 고려한 GMA 용접 공정의 금속이행 모델링 (Modeling of Metal Transfer in GMA Welding Process)

  • 이강희;최상균;유중돈
    • Journal of Welding and Joining
    • /
    • 제13권2호
    • /
    • pp.115-121
    • /
    • 1995
  • As the metal transfer in the GMAW process affects the weld quality and productivity, the mechanism of molten formation and detachment has been investigated at various welding conditions. The force balance and pinch instability models have been widely used to analyze the metal transfer in the globular and spray modes, respectively A new approach is proposed in this work by minimizing the energy of molten drop system. Effects of the surface tension, gravity, electromagnetic and drag forces are considered with no presumed molten drop geometry. Effects of various welding conditions on the metal transfer are explained. The results show that the proposed mode can be applied to the globular and spray transfer modes. When compared with other models, results of the proposed model show better agreements with the available experimental data, which demonstrates the validity of the present model.

  • PDF

VOF 방법을 이용한 GMA 용접의 금속 이행에 관한 동적 해석 (I) - 입상 용적과 스프레이 이행 모드의 해석 - (Dynamic Analysis of Metal Transfer using VOF Method in GMAW (I) - Globular and Spray Transfer Modes)

  • 최상균;유중돈;김용석
    • Journal of Welding and Joining
    • /
    • 제15권3호
    • /
    • pp.36-46
    • /
    • 1997
  • Dynamics of molten drop detachment in the Gas Metal Arc (GMA) welding is investigated using the Volume of Fluid(VOF) method. The electromagnetic effects are included in the formulation of the VOF method which has been widely used to analyze the dynamics of the fluid having a free surface. The molten drop geometry, pressure and velocity profiles within the drop are calculated numerically in the cases of globular and spray transfer modes. It appears that the velocity and current distribution affect metal detachment. It is found that the taper is formed and maintained during the spray transfer by the electromagnetic force. Predicted results show reasonably good agreement with the available experimental data which validates the application of the VOF method to metal transfer analysis.

  • PDF

핀치이론의 수정 모델을 이용한 스프레이 모드의 해석 (Analysis of Spray Mode Using Modified Pinch Instability Theory)

  • 박아영;;김선락;유중돈
    • Journal of Welding and Joining
    • /
    • 제27권5호
    • /
    • pp.88-93
    • /
    • 2009
  • While the pinch instability theory (PIT) has been widely employed to analyze the spray transfer mode in the gas metal arc welding (GMAW), it cannot predict the detaching drop size accurately. The PIT is modified in this work to increase the accuracy of prediction and to simulate the molten tip geometry to be more physically acceptable. Since the molten tip becomes a cone shape in the spray mode, the effective wire diameter is formulated that the effective diameter is inversely proportional to current square. Modifications are also made to consider the finite length of the liquid column and current leakage through the arc. While the effective diameter influences drop transfer significantly, the current leakage has negligible effects. The effects of modifications on drop transfer are analyzed, and the predicted drop diameters show good agreements with the experimental data of the steel wire.

핀치이론의 수정 모델을 이용한 스프레이 모드의 해석 (Analysis of Spray Mode Using Modified Pinch Instability Theory)

  • 박아영;;김선락;유중돈
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.44-44
    • /
    • 2009
  • While the pinch instability theory (PIT) has been widely employed to analyze the spray transfer mode in the gas metal arc welding (GMAW), it cannot predict the detaching drop size accurately. The PIT is modified in this work to increase the accuracy of prediction and to simulate the molten tip geometry to be more physically acceptable. Since the molten tip becomes a cone shape in the spray mode, the effective wire diameter is formulated that the effective diameter is inversely proportional to current square. Modifications are also made to consider the finite length of the liquid column and current leakage through the arc. While the effective diameter influences drop transfer significantly, the current leakage has negligible effects. The effects of modifications on drop transfer are analyzed, and the predicted drop diameters show good agreements with the experimental data of the steel wire.

  • PDF