• Title/Summary/Keyword: Molten Core-Concrete Interaction

Search Result 17, Processing Time 0.02 seconds

Assessment of Mass Fraction and Melting Temperature for the Application of Limestone Concrete and Siliceous Concrete to Nuclear Reactor Basemat Considering Molten Coree-Concrete Interaction

  • Lee, Hojae;Cho, Jae-Leon;Yoon, Eui-Sik;Cho, Myungsug;Kim, Do-Gyeum
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.448-456
    • /
    • 2016
  • Severe accident scenarios in nuclear reactors, such as nuclear meltdown, reveal that an extremely hot molten core may fall into the nuclear reactor cavity and seriously affect the safety of the nuclear containment vessel due to the chain reaction caused by the reaction between the molten core and concrete. This paper reports on research focused on the type and amount of vapor produced during the reaction between a high-temperature molten core and concrete, as well as on the erosion rate of concrete and the heat transfer characteristics at its vicinity. This study identifies themass fraction and melting temperature as the most influential properties of concrete necessary for a safety analysis conducted in relation to the thermal interaction between the molten core and the basemat concrete. The types of concrete that are actually used in nuclear reactor cavities were investigated. The $H_2O$ content in concrete required for the computation of the relative amount of gases generated by the chemical reaction of the vapor, the quantity of $CO_2$ necessary for computing the cooling speed of the molten core, and the melting temperature of concrete are evaluated experimentally for the molten core-concrete interaction analysis.

Scoping Analysis of MCCI (Molten Core Concrete Interaction) at Plant Scale Using CORQUENCH Code (CORQUENCH 코드를 사용한 실규모 원자로의 노심용융물과 콘크리트 상호반응 해석)

  • Kim, Hwan-Yeol;Park, Jong-Hwa
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.268-271
    • /
    • 2008
  • If a reactor vessel is failed to retain a molten corium in a postulated severe accident, the molten corium is released outside the reactor vessel into a reactor cavity. The molten corium would attack the concrete wall and basemat of the reactor cavity, which may lead to inevitable concrete decompositions and possible radiological releases. In the OECD/MCCI project, a series of tests were performed to secure the data for cooling the molten corium spread out at the reactor cavity and for the long-term CCI (Core Concrete Interaction). Also, a MCCI (Molten Core Concrete Interaction) analysis code, CORQUENCH was upgraded at Argonne National Laboratory with embedding the new models developed for the tests. This paper deals with analyses of MCCI at plant scale under the conditions of top flooding using the upgraded CORQUENCH code. The modeling approach is briefly summarized first, followed by presentation of a validation calculation that illustrates the predicative capability of the modeling tool. With this background in place, the model is then used to carry out a parametric set of scoping calculations that define approximate coolability envelopes for the LCS (Limestone Common Sand) concrete that has been evaluated in the OECD/MCCI project.

  • PDF

Transient Simulations of Concrete Ablation due to a Release of Molten Core Material (방출된 노심용융 물질에 의한 콘크리트 침식 천이 모의)

  • Kim, H.Y.;Park, J.H.;Kim, H.D.;Kim, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3491-3496
    • /
    • 2007
  • If a molten core is released from a reactor vessel into a reactor cavity during a severe accident, an important safety issue of coolability of the molten core from top-flooding and concrete ablation due to a molten core concrete interaction (MCCI) is still unresolved. The released molten core debris would attack the concrete wall and basemat of the reactor cavity, which will lead to inevitable concrete decompositions and possible radiological releases. In a OECD/MCCI project scheduled for 4 years from 2002. 1 to 2005. 12, a series of tests were performed to secure the data for cooling the molten core spread out at the reactor cavity and for the 2-D long-term core concrete interaction (CCI). The tests included not only separate effect tests such as a melt eruption, water ingression, and crust failure tests with a prototypic material but also 2-D CCI tests with a prototypic material under dry and flooded cavity conditions. The paper deals with the transient simulations on the CCI-2 test by using a severe accident analysis code, CORQUENCH, which was developed at Argonne National Laboratory (ANL). Similar simulations had been already per for me d by using MELCOR 1.8.5 code. Unlike the MELCOR 1.8.5, the CORQUENCH includes a melt eruption mode I and a newly developed water ingression model based on the water ingression tests under the OECD/MCCI project. In order to adjust the geometrical differences between the CCI-2 test (rectangular geometry) and the simulations (cylindrical geometry), the same scaling methodology as used in the MELCOR simulation was applied. For the direct comparison of the simulation results, the same inputs for the MELCOR simulation were used. The simulation results were compared with the previous results by using MELCOR 1.8.5.

  • PDF

A Study on the Applicability of MELCOR to Molten Core-Concrete Interaction Under Severe Accidents

  • Kim, Ju-Youl;Chung, Chang-Hyun;Lee, Byung-Chul
    • Nuclear Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.425-432
    • /
    • 2000
  • It has been an essential part for the safety assessment of nuclear power plants to understand various phenomena associated with the molten core-concrete interaction(MCCI) under severe accidents. In this study, the severe accident analysis code MELCOR was used to simulate the MCCI experiments such as SWISS and SURC test series which had been performed in Sandia National Laboratories(SNL). The calculation results were compared with corresponding experimental data such as melt temperature, concrete ablation distance, gas generation rate, and aerosol release rate. Good agreements were observed between MELCOR calculation and experimental data. The melt pool was sustained within the range of high temperature and the concrete ablation occurred continuously. The gas generation and aerosol release were under the influence of melt temperature and overlying water pool, respectively.

  • PDF

Numerical simulation on jet breakup in the fuel-coolant interaction using smoothed particle hydrodynamics

  • Choi, Hae Yoon;Chae, Hoon;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3264-3274
    • /
    • 2021
  • In a severe accident of light water reactor (LWR), molten core material (corium) can be released into the wet cavity, and a fuel-coolant interaction (FCI) can occur. The molten jet with high speed is broken and fragmented into small debris, which may cause a steam explosion or a molten core concrete interaction (MCCI). Since the premixing stage where the jet breakup occurs has a large impact on the severe accident progression, the understanding and evaluation of the jet breakup phenomenon are highly important. Therefore, in this study, the jet breakup simulations were performed using the Smoothed Particle Hydrodynamics (SPH) method which is a particle-based Lagrangian numerical method. For the multi-fluid system, the normalized density approach and improved surface tension model (CSF) were applied to the in-house SPH code (single GPU-based SOPHIA code) to improve the calculation accuracy at the interface of fluids. The jet breakup simulations were conducted in two cases: (1) jet breakup without structures, and (2) jet breakup with structures (control rod guide tubes). The penetration depth of the jet and jet breakup length were compared with those of the reference experiments, and these SPH simulation results are qualitatively and quantitatively consistent with the experiments.

An Experimental Study on the Transient Interaction Between High Temperature Thermite Melt and Concrete

  • Nho, Ki-Man;Kim, Jong-Hwan;Kim, Sang-Baik;Shin, Ki-Yeol;Mo Chung
    • Nuclear Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.336-347
    • /
    • 1997
  • During postulated severe accidents in Light water Reactors, molten corium which was ejected from the reactor vessel bottom, may erode the concrete basemat of the containment and there by threaten the containment integrity. This study experimentally examines the molten core-concrete interaction (MCC) using 20kg of thermite melt (Fe + $Al_2$O$_3$) and the concrete, used in Yonggwang Nuclear Power Plant Units 3 and 4 (YGN 3 & 4) in Korea. The measured data are the downward heat fluxes, concrete erosion rate, gases and particle generation rates during MCCI. Transient results ore compared with those of TURCIT experiment conducted by SNL in USA. The peak downward heat flux to the concrete was measured to be about 2.1㎿/$m^2$. The initial concrete erosion rate was 175cm per hour, decreasing to 30cm per hour. It was shown from the post-test that the erosion was progressed downward up to 18mm in the concrete slug.

  • PDF

Analysis for the Coolability of the Reactor Cavity in a Korean 1000 MWe PWR Using MELCOR 1.8.3 Computer Code

  • Lee, Byung-Chul;Kim, Ju-Yeul;Chung, Chang-Hyun;Park, Soo-Yong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.669-674
    • /
    • 1996
  • The analysis for the coolability of the reactor cavity in typical Korean 1000 MWe Nuclear Unit under severe accidents is performed using MELCOR 1.8.3 code. The key parameters molten core-concrete interaction(MCCI) such as melt temperature, concrete ablation history and gas generation are investigated. Total twenty cases are selected according to ejected debris fraction and coolant mass, The ablation rate of concrete decreases as mass of the melt decreases and coolant mass increases. Heat loss from molten pool to coolant is comparable to total decay heat, so concrete ablation is delayed until water is absent and crust begins to remove. Also, overpressurization due to non-condensible gases generated during corium and concrete interacts can cause to additional risk of containment failure. It is concluded that flooded reactor cavity condition is very important to minimize the cavity ablation and pressure load by non-condensible gases on containment.

  • PDF

An Evaluation of Cooling of Core Debris and Impact on Containment Transient Pressure under Severe Accident Conditions (극심한 사고시 노심 냉각 및 격납용기 과도압력에 미치는 영향)

  • Jong In Lee;Jin Soo Kim;Byung Hun Lee
    • Nuclear Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.256-266
    • /
    • 1983
  • An evaluation of containment transient pressure due to the particulate debris/water/concrete interaction under severe accident conditions is presented for a pressurized water reactor with a large dry containment building. A particulate debris/water/concrete model is developed and incorporated into the MARCH computer code. Comparisons with the existing MARCH molten debris/concrete model were performed for the TMLB' and S$_2$D sequences. The results yield a much slower concrete decomposition rate and release less gases into the containment atmosphere. Contrary to the molten debris model, the particulate debris model exhibits a strong interaction with water and causes a higher containment pressure. The effect of gas influx on the debris bed heat transfer was found to be insignificant.

  • PDF

CONTRIBUTIONS OF THE VULCANO EXPERIMENTAL PROGRAMME TO THE UNDERSTANDING OF MCCI PHENOMENA

  • Christophe, Journeau;Piluso, Pascal;Correggio, Patricia;Ferry, Lionel;Fritz, Gerald;Haquet, Jean Francois;Monerris, Jose;Ruggieri, Jean-Michel;Sanchez-Brusset, Mathieu;Parga, Clemente
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.261-272
    • /
    • 2012
  • Molten Core Concrete Interaction (MCCI) is a complex process characterized by concrete ablation and volatile generation; Thermal and solutal convection in a bubble-agitated melt; Physico-chemical evolution of the corium pool with a wide solidification range (of the order of 1000 K). Twelve experiments have been carried out in the VULCANO facility with prototypic corium and sustained heating. The dry oxidic corium tests have contributed to show that silica-rich concrete experience an anisotropic ablation. This unexpected ablation pattern is quite reproducible and can be recalculated, provided an empirical anisotropy factor is assumed. Dry tests with oxide and metal liquid phases have also yielded unexpected results: a larger than expected steel oxidation and unexpected topology of the metallic phase (at the bottom of the cavity and also on the vertical concrete walls). Finally, VULCANO has proved its interest for the study of mitigation solutions such as the COMET bottom flooding core catcher.

Measured data of thermophysical properties of concrete for a temperature range of $20^{\circ}C$ to $1100^{\circ}C$ (상온에서 $1100^{\circ}C$까지 온도변화에 따른 콘크리트의 열물성 측정치)

  • Shin, Ki-Yeol;Chung, Mo;Kim, Sang-Baik;Kim, Jong-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.596-606
    • /
    • 1998
  • Thermophysical properties and the compressive strength of concrete used in nuclear power plants in Korea were measured. The chemical composition of the concrete was also analyzed. The measured thermophysical properties include the density, the thermal conductivity, the thermal diffusivity and the specific heat for a wide temperature range of 20.deg. C to 1100.deg. C. The chemical composition of Korean concrete is similar to that of US basaltic concrete and the thermophysical properties are strongly temperature dependent. The density, the conductivity and the diffusivity decrease with an increase in temperature, and particularly the conductivity and the diffusivity are a 50-perdent decrease at 900.deg. C as compared with these values at room temperature. The specific heat increases until 500.deg. C, decreases from 700.deg. C to 900 .deg. C, and then increases again when temperature is above 900.deg. C. The measurement beyond 1100.deg. C is not acceptably accurate because the concrete decomposes to a liquid phase from a solid phase at that temperature. The results of this study can be applied, for example, to an analysis of the molten core-concrete interaction (MCCI) phenomenon of concrete structures at high temperature will also require those property data, especially for high temperature ranges.